Határozza meg a legegyszerűbb trigonometrikus egyenleteket! Hogyan kell megoldani a trigonometrikus egyenleteket

Egyszerű trigonometrikus egyenletek megoldása.

Bármilyen bonyolultságú trigonometrikus egyenlet megoldása végső soron a legegyszerűbb trigonometrikus egyenletek megoldásához vezet. És ebben a trigonometrikus kör ismét a legjobb asszisztensnek bizonyul.

Emlékezzünk vissza a koszinusz és a szinusz definíciójára.

A szög koszinusza az egységkör egy pontjának abszcisszája (vagyis a tengely menti koordinátája), amely egy adott szögön át történő elforgatásnak felel meg.

A szög szinusza az egységkör egy pontjának ordinátája (vagyis a tengely menti koordinátája), amely egy adott szögön keresztüli elforgatásnak felel meg.

A trigonometrikus kör pozitív mozgási iránya az óramutató járásával ellentétes. A 0 fokos (vagy 0 radiános) elforgatás egy (1;0) koordinátájú pontnak felel meg.

Ezeket a definíciókat egyszerű trigonometrikus egyenletek megoldására használjuk.

1. Oldja meg az egyenletet!

Ezt az egyenletet kielégíti a forgásszög minden olyan értéke, amely megfelel a kör azon pontjainak, amelyek ordinátája egyenlő .

Jelöljünk egy pontot ordinátával az ordinátatengelyen:


Rajzoljon egy vízszintes vonalat párhuzamosan az x tengellyel, amíg az nem metszi a kört. Két pontot kapunk, amelyek a körön fekszenek, és van egy ordináta. Ezek a pontok az elforgatási szögeknek és radiánoknak felelnek meg:


Ha a radiánonkénti forgásszögnek megfelelő pontot elhagyva egy teljes kört megkerülünk, akkor a radiánonkénti forgásszögnek megfelelő és azonos ordinátájú ponthoz jutunk. Vagyis ez az elforgatási szög is kielégíti az egyenletünket. Annyi „üres” fordulatot tehetünk, amennyit csak akarunk, visszatérve ugyanabba a pontba, és ezek a szögértékek kielégítik az egyenletünket. Az „üresjárati” fordulatok számát a (vagy) betű jelöli. Mivel ezeket a fordulatokat pozitív és negatív irányba is megtehetjük, (vagy) bármilyen egész értéket felvehetünk.

Vagyis az eredeti egyenlet megoldásainak első sorozatának alakja:

, , - egész számok halmaza (1)

Hasonlóképpen, a megoldások második sorozatának formája a következő:

, Ahol , . (2)

Amint azt sejteni lehetett, ez a megoldássorozat a kör azon pontján alapul, amely megfelel az elforgatási szögnek.

Ez a két megoldássorozat egy bejegyzésben kombinálható:

Ha ebben a bejegyzésben veszünk (vagyis párost), akkor megkapjuk az első megoldássorozatot.

Ha ebben a bejegyzésben veszünk (vagyis páratlant), akkor a második megoldássort kapjuk.

2. Most oldjuk meg az egyenletet

Mivel ez az egységkör egy pontjának abszcissza, amelyet egy szögben elforgatva kapunk, a pontot az abszcisszával jelöljük a tengelyen:


Rajzolj egy függőleges vonalat párhuzamosan a tengellyel, amíg az nem metszi a kört. Két pontot kapunk a körön fekve és egy abszcisszával. Ezek a pontok az in és radián elforgatási szögeknek felelnek meg. Emlékezzünk vissza, hogy az óramutató járásával megegyező irányba mozgatva negatív elforgatási szöget kapunk:


Írjunk két megoldássorozatot:

,

,

(A kívánt ponthoz úgy jutunk el, hogy a fő teljes körből indulunk el, azaz.

Foglaljuk össze ezt a két sorozatot egy bejegyzésben:

3. Oldja meg az egyenletet!

Az érintő egyenes átmegy az egységkör OY tengellyel párhuzamos koordinátáinak (1,0) pontján

Jelöljünk rajta egy pontot 1-gyel egyenlő ordinátával (azt keressük, amelyik szögeinek az érintője egyenlő 1-gyel):


Kössük össze ezt a pontot a koordináták origójával egy egyenessel, és jelöljük meg az egyenes metszéspontjait az egységkörrel. Az egyenes és a kör metszéspontjai megfelelnek a és a forgásszögeknek:


Mivel az egyenletünket kielégítő elforgatási szögeknek megfelelő pontok radiánnyi távolságra helyezkednek el egymástól, a megoldást így írhatjuk fel:

4. Oldja meg az egyenletet!

A kotangensek vonala átmegy azon a ponton, ahol az egységkör koordinátái a tengellyel párhuzamosak.

Jelöljünk egy pontot -1 abszcisszával a kotangensek vonalán:


Kapcsoljuk össze ezt a pontot az egyenes origójával, és folytassuk addig, amíg nem metszi a kört. Ez az egyenes metszi a kört azokban a pontokban, amelyek megfelelnek az in és radián elfordulási szögeinek:


Mivel ezeket a pontokat egymástól egyenlő távolság választja el, ezért az egyenlet általános megoldását a következőképpen írhatjuk fel:

A legegyszerűbb trigonometrikus egyenletek megoldását szemléltető megadott példákban trigonometrikus függvények táblázatos értékeit használtuk.

Ha azonban az egyenlet jobb oldala nem táblázatos értéket tartalmaz, akkor az értéket behelyettesítjük az egyenlet általános megoldásába:





KÜLÖNLEGES MEGOLDÁSOK:

Jelöljük a kör azon pontjait, amelyek ordinátája 0:


Jelöljünk egy pontot a körön, amelynek ordinátája 1:


Jelöljünk a körön egyetlen pontot, amelynek ordinátája egyenlő -1-gyel:


Mivel a nullához legközelebbi értékeket szokás feltüntetni, a megoldást a következőképpen írjuk:

Jelöljük a kör azon pontjait, amelyek abszcissza 0:


5.
Jelöljünk a körön egyetlen pontot, amelynek abszcisszán 1:


Jelöljünk egy olyan pontot a körön, amelynek abszcissza értéke -1:


És kicsit bonyolultabb példák:

1.

A szinusz egyenlő eggyel, ha az argumentum egyenlő

A szinuszunk argumentuma egyenlő, így kapjuk:

Osszuk el az egyenlőség mindkét oldalát 3-mal:

Válasz:

2.

A koszinusz nulla, ha a koszinusz argumentuma az

A koszinuszunk argumentuma egyenlő -val, így kapjuk:

Kifejezzük, ehhez először jobbra haladunk ellenkező előjellel:

Egyszerűsítsük a jobb oldalt:

Mindkét oldalt elosztjuk -2-vel:

Figyeljük meg, hogy a kifejezés előtti előjel nem változik, mivel k tetszőleges egész értéket vehet fel.

Válasz:

És végül nézze meg a „Gyökök kiválasztása trigonometrikus egyenletben trigonometrikus kör segítségével” című videóleckét.

Ezzel véget is ért az egyszerű trigonometrikus egyenletek megoldásáról folytatott beszélgetésünk. Legközelebb arról beszélünk, hogyan döntsünk.

Problémájára részletes megoldást rendelhet!!!

A trigonometrikus függvény (`sin x, cos x, tan x` vagy `ctg x`) előjele alatt ismeretlent tartalmazó egyenlőséget trigonometrikus egyenletnek nevezzük, és ezek képleteit vizsgáljuk tovább.

A legegyszerűbb egyenletek a `sin x=a, cos x=a, tg x=a, ctg x=a`, ahol `x` a keresendő szög, `a` tetszőleges szám. Írjuk fel mindegyikhez a gyökképleteket.

1. `sin x=a` egyenlet.

Az `|a|>1` esetén nincs megoldás.

Amikor `|a| A \leq 1` végtelen számú megoldást tartalmaz.

Gyökképlet: `x=(-1)^n arcsin a + \pi n, n \in Z`

2. "cos x=a" egyenlet

Az `|a|>1` - mint a szinusz esetében - nincs megoldása valós számok között.

Amikor `|a| A \leq 1` végtelen számú megoldást tartalmaz.

Gyökképlet: `x=\pm arccos a + 2\pi n, n \in Z`

Szinusz és koszinusz speciális esetei grafikonokban.

3. "tg x=a" egyenlet

Végtelen számú megoldása van az "a" bármely értékére.

Gyökérképlet: `x=arctg a + \pi n, n \in Z`

4. `ctg x=a` egyenlet

Ezenkívül végtelen számú megoldása van az "a" bármely értékére.

Gyökérképlet: `x=arcctg a + \pi n, n \in Z`

A táblázatban szereplő trigonometrikus egyenletek gyökereinek képletei

A szinuszhoz:
A koszinuszhoz:
Érintő és kotangens esetén:
Képletek inverz trigonometrikus függvényeket tartalmazó egyenletek megoldására:

Trigonometrikus egyenletek megoldási módszerei

Bármely trigonometrikus egyenlet megoldása két lépésből áll:

  • a legegyszerűbbre való átalakítás segítségével;
  • oldja meg a fent leírt gyökképletek és táblázatok segítségével kapott legegyszerűbb egyenletet.

Nézzük meg a fő megoldási módszereket példákon keresztül.

Algebrai módszer.

Ez a módszer magában foglalja egy változó lecserélését és egyenlőségbe való behelyettesítését.

Példa. Oldja meg az egyenletet: `2cos^2(x+\frac \pi 6)-3sin(\frac \pi 3 - x)+1=0`

`2cos^2(x+\frac \pi 6)-3cos(x+\frac \pi 6)+1=0,

cserélje ki: `cos(x+\frac \pi 6)=y, majd `2y^2-3y+1=0`,

megtaláljuk a gyökereket: `y_1=1, y_2=1/2`, amiből két eset következik:

1. `cos(x+\frac \pi 6)=1`, `x+\frac \pi 6=2\pi n`, `x_1=-\frac \pi 6+2\pi n`.

2. `cos(x+\frac \pi 6)=1/2, `x+\frac \pi 6=\pm arccos 1/2+2\pi n`, `x_2=\pm \frac \pi 3- \frac \pi 6+2\pi n`.

Válasz: `x_1=-\frac \pi 6+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

Faktorizáció.

Példa. Oldja meg az egyenletet: `sin x+cos x=1`.

Megoldás. Mozgassuk az egyenlőség összes tagját balra: `sin x+cos x-1=0`. Használatával a bal oldalt transzformáljuk és faktorizáljuk:

"sin x - 2sin^2 x/2=0",

"2sin x/2 cos x/2-2sin^2 x/2=0",

"2sin x/2 (cos x/2-sin x/2)=0",

  1. `sin x/2 =0`, `x/2 =\pi n`, `x_1=2\pi n`.
  2. „cos x/2-sin x/2=0”, „tg x/2=1”, „x/2=arctg 1+ \pi n”, „x/2=\pi/4+ \pi n” , `x_2=\pi/2+ 2\pi n`.

Válasz: `x_1=2\pi n`, `x_2=\pi/2+ 2\pi n`.

Redukálás homogén egyenletre

Először is le kell redukálnia ezt a trigonometrikus egyenletet a két alak egyikére:

`a sin x+b cos x=0` (elsőfokú homogén egyenlet) vagy `a sin^2 x + b sin x cos x +c cos^2 x=0` (másodfokú homogén egyenlet).

Ezután ossza el mindkét részt `cos x \ne 0` -val - az első esetben, és "cos^2 x \ne 0" - a második esetben. Egyenleteket kapunk a `tg x`-re: `a tg x+b=0` és `a tg^2 x + b tg x +c =0`, amelyeket ismert módszerekkel kell megoldani.

Példa. Oldja meg az egyenletet: `2 sin^2 x+sin x cos x - cos^2 x=1`.

Megoldás. Írjuk a jobb oldalt a következőképpen: `1=sin^2 x+cos^2 x`:

`2 sin^2 x+sin x cos x — cos^2 x=` `sin^2 x+cos^2 x`,

`2 sin^2 x+sin x cos x — cos^2 x -` ` sin^2 x — cos^2 x=0`

`sin^2 x+sin x cos x — 2 cos^2 x=0`.

Ez egy homogén másodfokú trigonometrikus egyenlet, bal és jobb oldalát elosztjuk `cos^2 x \ne 0`-val, így kapjuk:

`\frac (sin^2 x)(cos^2 x)+\frac(sin x cos x)(cos^2 x) — \frac(2 cos^2 x)(cos^2 x)=0

`tg^2 x+tg x — 2=0`. Vezessük be a `tg x=t` helyettesítést, ami `t^2 + t - 2=0`-t eredményez. Ennek az egyenletnek a gyöke: `t_1=-2` és `t_2=1`. Akkor:

  1. „tg x=-2”, „x_1=arctg (-2)+\pi n”, „n \in Z”
  2. `tg x=1`, `x=arctg 1+\pi n`, `x_2=\pi/4+\pi n`, ` n \in Z`.

Válasz. `x_1=arctg (-2)+\pi n`, `n \in Z, `x_2=\pi/4+\pi n`, `n \in Z`.

Áttérés félszögre

Példa. Oldja meg az egyenletet: "11 sin x - 2 cos x = 10".

Megoldás. Alkalmazzuk a kettős szögképleteket, aminek eredménye: `22 sin (x/2) cos (x/2) -` `2 cos^2 x/2 + 2 sin^2 x/2=` `10 sin^2 x /2 +10 cos^2 x/2`

"4 tg^2 x/2 – 11 tg x/2 +6=0".

A fent leírt algebrai módszert alkalmazva a következőket kapjuk:

  1. „tg x/2=2”, „x_1=2 arctg 2+2\pi n”, „n \in Z”,
  2. „tg x/2=3/4”, „x_2=arctg 3/4+2\pi n”, „n \in Z”.

Válasz. `x_1=2 arctg 2+2\pi n, n \in Z`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

Segédszög bevezetése

Az „a sin x + b cos x =c” trigonometrikus egyenletben, ahol a,b,c együtthatók, x pedig egy változó, mindkét oldalt ossza el „sqrt (a^2+b^2)”-vel:

`\frac a(sqrt (a^2+b^2)) sin x +` `\frac b(sqrt (a^2+b^2)) cos x =` `\frac c(sqrt (a^2) ) +b^2))".

A bal oldali együtthatók szinusz és koszinusz tulajdonságaival rendelkeznek, vagyis négyzeteinek összege 1, moduljaik pedig nem nagyobbak 1-nél. Jelöljük őket a következőképpen: `\frac a(sqrt (a^2) +b^2))=cos \varphi` , ` \frac b(sqrt (a^2+b^2)) =sin \varphi`, `\frac c(sqrt (a^2+b^2)) =C`, akkor:

`cos \varphi sin x + sin \varphi cos x =C`.

Nézzük meg közelebbről a következő példát:

Példa. Oldja meg az egyenletet: `3 sin x+4 cos x=2`.

Megoldás. Az egyenlőség mindkét oldalát elosztjuk `sqrt (3^2+4^2)-vel, így kapjuk:

`\frac (3 sin x) (sqrt (3^2+4^2))+` `\frac(4 cos x)(sqrt (3^2+4^2))=` `\frac 2(sqrt (3^2+4^2))".

"3/5 sin x+4/5 cos x=2/5".

Jelöljük `3/5 = cos \varphi` , `4/5=sin \varphi`. Mivel a `sin \varphi>0`, `cos \varphi>0`, akkor a `\varphi=arcsin 4/5`-t vesszük segédszögnek. Ezután az egyenlőségünket a következő formában írjuk fel:

`cos \varphi sin x+sin \varphi cos x=2/5`

A szinusz szögösszegének képletét alkalmazva egyenlőségünket a következő formában írjuk fel:

"sin (x+\varphi)=2/5",

`x+\varphi=(-1)^n arcsin 2/5+ \pi n`, `n \in Z`,

`x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Válasz. `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Törtracionális trigonometrikus egyenletek

Ezek olyan tört egyenlőségek, amelyek számlálói és nevezői trigonometrikus függvényeket tartalmaznak.

Példa. Oldja meg az egyenletet. `\frac (sin x)(1+cos x)=1-cos x.

Megoldás. Szorozd meg és oszd el az egyenlőség jobb oldalát "(1+cos x)"-vel. Ennek eredményeként a következőket kapjuk:

`\frac (sin x)(1+cos x)=` `\frac ((1-cos x)(1+cos x))(1+cos x)

`\frac (sin x)(1+cos x)=` `\frac (1-cos^2 x)(1+cos x)`

`\frac (sin x)(1+cos x)=` `\frac (sin^2 x)(1+cos x)`

`\frac (sin x)(1+cos x)-` `\frac (sin^2 x)(1+cos x)=0

"\frac (sin x-sin^2 x)(1+cos x)=0".

Figyelembe véve, hogy a nevező nem lehet egyenlő nullával, a következőt kapjuk: `1+cos x \ne 0`, `cos x \ne -1`, ` x \ne \pi+2\pi n, n \in Z`.

Tegyük egyenlővé a tört számlálóját nullával: `sin x-sin^2 x=0`, `sin x(1-sin x)=0`. Ezután `sin x=0` vagy `1-sin x=0`.

  1. `sin x=0`, `x=\pi n`, `n \in Z`
  2. `1-sin x=0`, `sin x=-1`, `x=\pi /2+2\pi n, n \in Z`.

Tekintettel arra, hogy ` x \ne \pi+2\pi n, n \in Z`, a megoldások: `x=2\pi n, n \in Z` és `x=\pi /2+2\pi n` , `n \in Z`.

Válasz. `x=2\pi n`, `n \in Z`, `x=\pi /2+2\pi n`, `n \in Z`.

A trigonometriát és különösen a trigonometrikus egyenleteket a geometria, a fizika és a mérnöki tudomány szinte minden területén használják. A tanulás a 10. osztályban kezdődik, az egységes államvizsgához mindig vannak feladatok, ezért próbálja meg emlékezni a trigonometrikus egyenletek összes képletére - ezek biztosan hasznosak lesznek az Ön számára!

Azonban még csak memorizálni sem kell őket, a lényeg az, hogy megértsük a lényeget és le tudjuk vezetni. Nem olyan nehéz, mint amilyennek látszik. Győződjön meg Ön is a videó megtekintésével.

A trigonometrikus egyenletek megoldásának fogalma.

  • Egy trigonometrikus egyenlet megoldásához alakítsa át egy vagy több alapvető trigonometrikus egyenletté. Egy trigonometrikus egyenlet megoldása végül a négy alapvető trigonometrikus egyenlet megoldásához vezet.
  • Trigonometrikus alapegyenletek megoldása.

    • Négyféle alapvető trigonometrikus egyenlet létezik:
    • sin x = a; cos x = a
    • tan x = a; ctg x = a
    • Az alapvető trigonometrikus egyenletek megoldása magában foglalja az egységkör különböző x pozícióinak megtekintését, valamint egy konverziós táblázat (vagy számológép) használatát.
    • 1. példa sin x = 0,866. Egy konverziós táblázat (vagy számológép) segítségével megkapja a választ: x = π/3. Az egységkör másik választ ad: 2π/3. Ne feledje: minden trigonometrikus függvény periodikus, azaz értékeik ismétlődnek. Például a sin x és cos x periodicitása 2πn, a tg x és ctg x periodicitása pedig πn. Ezért a válasz a következőképpen van leírva:
    • x1 = π/3 + 2πn; x2 = 2π/3 + 2πn.
    • 2. példa cos x = -1/2. Egy konverziós táblázat (vagy számológép) segítségével megkapja a választ: x = 2π/3. Az egységkör másik választ ad: -2π/3.
    • x1 = 2π/3 + 2π; x2 = -2π/3 + 2π.
    • 3. példa tg (x - π/4) = 0.
    • Válasz: x = π/4 + πn.
    • 4. példa ctg 2x = 1,732.
    • Válasz: x = π/12 + πn.
  • A trigonometrikus egyenletek megoldásában használt transzformációk.

    • A trigonometrikus egyenletek átalakításához algebrai transzformációkat (faktorizálás, homogén tagok redukciója stb.) és trigonometrikus azonosságokat használnak.
    • 5. példa: Trigonometrikus azonosságok felhasználásával a sin x + sin 2x + sin 3x = 0 egyenletet a 4cos x*sin (3x/2)*cos (x/2) = 0 egyenletté alakítjuk. Így a következő alapvető trigonometrikus egyenletek meg kell oldani: cos x = 0; sin(3x/2) = 0; cos(x/2) = 0.
    • Szögek keresése ismert függvényértékek segítségével.

      • Mielőtt megtanulná a trigonometrikus egyenletek megoldását, meg kell tanulnia, hogyan találhat szögeket ismert függvényértékek segítségével. Ez megtehető egy konverziós táblázat vagy számológép segítségével.
      • Példa: cos x = 0,732. A számológép azt a választ adja, hogy x = 42,95 fok. Az egységkör további szögeket ad, amelyek koszinusza szintén 0,732.
    • Tegye félre az oldatot az egységkörön.

      • Az egységkörön egy trigonometrikus egyenlet megoldásait ábrázolhatja. Az egységkörön lévő trigonometrikus egyenlet megoldásai egy szabályos sokszög csúcsai.
      • Példa: Az egységkörön lévő x = π/3 + πn/2 megoldások a négyzet csúcsait jelentik.
      • Példa: Az egységkörön lévő x = π/4 + πn/3 megoldások egy szabályos hatszög csúcsait jelentik.
    • Trigonometrikus egyenletek megoldási módszerei.

      • Ha egy adott trigonometrikus egyenlet csak egy trigonometrikus függvényt tartalmaz, oldja meg ezt az egyenletet trigonometrikus alapegyenletként. Ha egy adott egyenlet két vagy több trigonometrikus függvényt tartalmaz, akkor egy ilyen egyenlet megoldására 2 módszer létezik (az átalakítás lehetőségétől függően).
        • 1. módszer.
      • Alakítsa át ezt az egyenletet a következő alakú egyenletté: f(x)*g(x)*h(x) = 0, ahol f(x), g(x), h(x) a trigonometrikus alapegyenletek.
      • 6. példa 2cos x + sin 2x = 0. (0< x < 2π)
      • Megoldás. A sin 2x = 2*sin x*cos x kettősszög képlet használatával cserélje ki a sin 2x-et.
      • 2cos x + 2*sin x*cos x = 2cos x*(sin x + 1) = 0. Most oldjuk meg a két alapvető trigonometrikus egyenletet: cos x = 0 és (sin x + 1) = 0.
      • 7. példa cos x + cos 2x + cos 3x = 0. (0< x < 2π)
      • Megoldás: Trigonometrikus azonosságok segítségével alakítsuk át ezt az egyenletet a következő alakú egyenletté: cos 2x(2cos x + 1) = 0. Most oldjuk meg a két alapvető trigonometrikus egyenletet: cos 2x = 0 és (2cos x + 1) = 0.
      • 8. példa sin x - sin 3x = cos 2x. (0< x < 2π)
      • Megoldás: Trigonometrikus azonosságok segítségével alakítsa át ezt az egyenletet a következő alakú egyenletté: -cos 2x*(2sin x + 1) = 0. Most oldja meg a két alapvető trigonometrikus egyenletet: cos 2x = 0 és (2sin x + 1) = 0 .
        • 2. módszer.
      • Alakítsa át a megadott trigonometrikus egyenletet olyan egyenletté, amely csak egy trigonometrikus függvényt tartalmaz. Ezután cserélje ki ezt a trigonometrikus függvényt egy ismeretlenre, például t-re (sin x = t; cos x = t; cos 2x = t, tan x = t; tg (x/2) = t stb.).
      • 9. példa 3sin^2 x - 2cos^2 x = 4sin x + 7 (0< x < 2π).
      • Megoldás. Ebben az egyenletben a (cos^2 x) helyére (1 - sin^2 x) lép (az azonosságnak megfelelően). A transzformált egyenlet a következő:
      • 3sin^2 x - 2 + 2sin^2 x - 4sin x - 7 = 0. Cserélje le a sin x-et t-re. Most az egyenlet így néz ki: 5t^2 - 4t - 9 = 0. Ez egy másodfokú egyenlet, amelynek két gyökere van: t1 = -1 és t2 = 9/5. A második t2 gyök nem elégíti ki a függvénytartományt (-1< sin x < 1). Теперь решите: t = sin х = -1; х = 3π/2.
      • 10. példa tg x + 2 tg^2 x = ctg x + 2
      • Megoldás. Cserélje ki tg x-et t-re. Írja át az eredeti egyenletet a következőképpen: (2t + 1)(t^2 - 1) = 0. Most keresse meg t-t, majd keresse meg x-et, ha t = tan x.
  • A „Get A” videótanfolyam tartalmazza az összes olyan témát, amely a matematika egységes államvizsga sikeres letételéhez szükséges 60-65 ponttal. Teljesen a Profil egységes államvizsga matematika 1-13. Matematika egységes államvizsga alapvizsga letételére is alkalmas. Ha 90-100 ponttal szeretnél letenni az egységes államvizsgát, akkor az 1. részt 30 perc alatt és hiba nélkül kell megoldanod!

    Egységes államvizsgára felkészítő tanfolyam 10-11. évfolyam, valamint pedagógusok számára. Minden, ami az egységes államvizsga 1. részének matematikából (az első 12 feladat) és a 13. feladat (trigonometria) megoldásához szükséges. Ez pedig több mint 70 pont az egységes államvizsgán, és ezek nélkül sem egy 100 pontos, sem egy bölcsész nem megy.

    Minden szükséges elmélet. Az egységes államvizsga gyors megoldásai, buktatói és titkai. A FIPI Feladatbank 1. részének minden aktuális feladatát elemezték. A tanfolyam teljes mértékben megfelel az Egységes Államvizsga 2018 követelményeinek.

    A tanfolyam 5 nagy témát tartalmaz, egyenként 2,5 órás. Minden témát a semmiből adunk, egyszerűen és világosan.

    Több száz egységes államvizsga-feladat. Szöveges feladatok és valószínűségszámítás. Egyszerű és könnyen megjegyezhető algoritmusok a problémák megoldására. Geometria. Elmélet, referenciaanyag, az egységes államvizsga-feladatok minden típusának elemzése. Sztereometria. Trükkös megoldások, hasznos csalólapok, térbeli fantázia fejlesztése. Trigonometria a semmiből a feladatig 13. Megértés a zsúfoltság helyett. Komplex fogalmak világos magyarázata. Algebra. Gyökök, hatványok és logaritmusok, függvény és derivált. Az egységes államvizsga 2. részében szereplő összetett problémák megoldásának alapja.

    Fontos számunkra az Ön személyes adatainak védelme. Emiatt kidolgoztunk egy adatvédelmi szabályzatot, amely leírja, hogyan használjuk és tároljuk az Ön adatait. Kérjük, tekintse át adatvédelmi gyakorlatunkat, és tudassa velünk, ha kérdése van.

    Személyes adatok gyűjtése és felhasználása

    A személyes adatok olyan adatokra vonatkoznak, amelyek felhasználhatók egy adott személy azonosítására vagy kapcsolatfelvételre.

    Amikor kapcsolatba lép velünk, bármikor megkérhetjük személyes adatainak megadására.

    Az alábbiakban bemutatunk néhány példát arra, hogy milyen típusú személyes adatokat gyűjthetünk, és hogyan használhatjuk fel ezeket az információkat.

    Milyen személyes adatokat gyűjtünk:

    • Amikor jelentkezik az oldalon, különféle információkat gyűjthetünk, beleértve az Ön nevét, telefonszámát, e-mail címét stb.

    Hogyan használjuk fel személyes adatait:

    • Az általunk gyűjtött személyes adatok lehetővé teszik számunkra, hogy egyedi ajánlatokkal, promóciókkal és egyéb eseményekkel és közelgő eseményekkel kapcsolatba léphessünk Önnel.
    • Időről időre felhasználhatjuk személyes adatait fontos értesítések és közlemények küldésére.
    • A személyes adatokat belső célokra is felhasználhatjuk, például auditok lefolytatására, adatelemzésre és különféle kutatásokra annak érdekében, hogy javítsuk szolgáltatásainkat, és javaslatokat adjunk Önnek szolgáltatásainkkal kapcsolatban.
    • Ha nyereményjátékban, versenyben vagy hasonló promócióban vesz részt, az Ön által megadott információkat felhasználhatjuk az ilyen programok lebonyolítására.

    Információk közlése harmadik fél számára

    Az Öntől kapott információkat nem adjuk ki harmadik félnek.

    Kivételek:

    • Szükség esetén - a törvénynek, a bírósági eljárásnak, a bírósági eljárásoknak megfelelően és/vagy az Orosz Föderáció területén található állami kérelmek vagy kormányzati hatóságok kérelmei alapján - az Ön személyes adatainak nyilvánosságra hozatala. Felfedhetünk Önnel kapcsolatos információkat is, ha úgy ítéljük meg, hogy az ilyen nyilvánosságra hozatal biztonsági, bűnüldözési vagy egyéb közérdekű célból szükséges vagy megfelelő.
    • Átszervezés, egyesülés vagy eladás esetén az általunk gyűjtött személyes adatokat átadhatjuk a megfelelő jogutód harmadik félnek.

    Személyes adatok védelme

    Óvintézkedéseket teszünk – beleértve az adminisztratív, technikai és fizikai intézkedéseket is –, hogy megvédjük személyes adatait az elvesztéstől, lopástól és visszaéléstől, valamint a jogosulatlan hozzáféréstől, nyilvánosságra hozataltól, megváltoztatástól és megsemmisítéstől.

    A magánélet tiszteletben tartása vállalati szinten

    Személyes adatai biztonságának biztosítása érdekében az adatvédelmi és biztonsági előírásokat közöljük alkalmazottainkkal, és szigorúan betartjuk az adatvédelmi gyakorlatokat.

    Hasonló cikkek

    2024 rsrub.ru. A modern tetőfedési technológiákról. Építőipari portál.