Глоссарий. Классификация внешних нагрузок, действующих на элементы конструкций

При методике предельных состояний все нагрузки классифицированы в зависимости от вероятности их воздействия на нормативные и расчетные.

По признаку воздействия нагрузки разделяются на постоянные и временные. Последние могут быть длительного и кратковременного воздействия.

Кроме того, есть нагрузки, которые выделяются в разряд особых нагрузок и воздействий.

Постоянные нагрузки – собственный вес несущих и ограждающих конструкций, давление грунта, предварительное напряжение.

Временные длительные нагрузки – вес стационарного технологического оборудования, вес складируемых материалов в хранилищах, давление газов, жидкостей и сыпучих материалов в емкостях и т.д.

Кратковременные нагрузки – нормативные нагрузки от снега, ветра, подвижного подъемно-транспортного оборудования, массы людей, животных и т.п.

Особые нагрузки – сейсмические воздействия, взрывные воздействия. Нагрузки, возникающие в процессе монтажа конструкций. Нагрузки, связанные с поломкой технологического оборудования, воздействия, связанные с деформациями основания в связи с изменениями структуры грунта (просадочные грунты, осадка грунтов в карстовых районах и над подземными выработками).

Существует иногда термин “полезная нагрузка”. Полезной называют нагрузки, восприятие которых составляет цельное назначение сооружений, например, вес людей для пешеходного моста. Они бывают как временными, так и постоянным, например, вес монументального выставочного сооружения является постоянной нагрузкой для постамента. Для фундамента вес всех вышележащих конструкций также представляет полезную нагрузку.

При действии на конструкцию нескольких видов нагрузок усилия в ней определяются как при самых неблагоприятных сочетаниях с использованием коэффициентов сочетаний .

В СНиПе 2.01.07-85 “ Нагрузки и воздействия” различают:

основные сочетания , состоящие из постоянных и временных нагрузок;

особые сочетания , состоящие из постоянных, временных и одной из особых нагрузок.

При основном сочетании, включающем одну временную нагрузку, коэффициент сочетаний . При большем числе временных нагрузок, последние умножаются на коэффициент сочетаний .

В особых сочетаниях временные нагрузки учитываются с коэффициентом сочетаний , а особая нагрузка - с коэффициентом . Во всех видах сочетаний постоянная нагрузка имеет коэффициент .

нагруженных элементов

Учет сложного напряженного состояния при расчете металлических конструкций производится через расчетное сопротивление , которое устанавливается на основе испытаний металлических образцов при одноосном нагружении. Однако в реальных конструкциях материал, как правило, находится в сложном многокомпонентном напряженном состоянии. В связи с этим необходимо установить правило эквивалентности сложного напряженного состояния одноосному.

В качестве критерия эквивалентности принято использовать потенциальную энергию, накапливаемую в материале при его деформировании внешним воздействиям.

Для удобства анализа энергию деформации можно представить в виде суммы работ по изменению объема А о и изменения формы тела А ф. Первая не превышает 13% полной работы при упругом деформировании и зависит от среднего нормального напряжения.

1 - 2υ

A o = ----------(Ơ Χ + Ơ У + Ơ Ζ) 2 (2.3.)

Вторая работа связана со сдвигами в материале:

А ф = -------[(Ơ Χ 2 +Ơ Υ 2 + Ơ z 2 -(Ơ x Ơ y +Ơ y Ơ z +Ơ z Ơ x) + 3 (τ xy 2 +τ yz 2 + τ zx 2)] (2.4.)

Известно, что разрушение кристаллической структуры строительных сталей и алюминиевых сплавов связано со сдвиговыми явлениями в материале (движение дислокаций и пр.).

Работа формоизменения (2.4.) является инвариантом, поэтому при одноосном напряженном состоянии Ơ = Ơ имеем А 1 =[(1 + ) / 3Е ] Ơ 2

Приравнивая это значение выражению (2.4) и извлекая квадратный корень, получим:

Ơ пр = =Ơ (2.5)

Это соотношение устанавливает энергетическую эквивалентность сложного напряженного состояния одноосному. Выражение в правой части иногда называют приведенным напряжением Ơ пр, имея в виду приведение к некоторому состоянию с одноосным напряжением Ơ .

Если предельно допустимое напряжение в металле (расчетное сопротивление) устанавливается по пределу текучести стандартного образца Ơ T , то выражение (2.5) принимает вид Ơ пр = Ơ T и представляет собой условие пластичности при сложном напряженном состоянии, т.е. условие перехода материала из упругого состояния в пластичное.

В стенках двутавровых балок вблизи приложения поперечной нагрузки

Ơ x 0 . Ơ y 0 . τ xy 0 . остальными компонентами напряжений можно пренебречь. Тогда условие пластичности принимает вид

Ơ пр = = Ơ T (2.6)

В точках, удаленных от места приложения нагрузки, можно пренебречь также локальным напряжением Ơ y = 0 , тогда условие пластичности еще более упростится: Ơ пр = = Ơ T .

При простом сдвиге из всех компонентов напряжений только

τ xy 0 . тогда Ơ пр = = Ơ T . Отсюда

τ xy = Ơ T / = 0,58 Ơ T (2.7)

В соответствии с этим выражением в СНиПе принято соотношение между расчетными сопротивлениями на сдвиг и растяжение ,

где - расчетное сопротивление сдвигу; - предел текучести.

Поведение под нагрузкой центрально растянутого элемента и центрально сжатого при условии обеспечения его устойчивости полностью соответствует работе материала при простом растяжении-сжатии (рис.1.1, б ).

Предполагается, что напряжения в поперечном сечении этих элементов распределяются равномерно. Для обеспечения несущей способности таких элементов необходимо, чтобы напряжения от расчетных нагрузок в сечении с наименьшей площадью не превышали расчетного сопротивления.

Тогда неравенство первого предельного состояния (2.2) будет

где - продольная сила в элементах; - площадь нетто поперечного сечения элемента; - расчетное сопротивление, принимаемое равным , если в элементе не допускается развитие пластических деформаций; если же пластические деформации допустимы, то равняется наибольшему из двух значений и (здесь и - расчетные сопротивления материала по пределу текучести и по временному сопротивлению соответственно); - коэффициент надежности по материалу при расчете конструкции по временному сопротивлению; - коэффициент условий работы.

Проверка по второму предельному состоянию сводится к ограничению удлинения (укорочения) стержня от нормативных нагрузок

N n l / (E A) ∆ (2.9)

где - продольная сила в стержне от нормативных нагрузок; - расчетная длина стержня, равная расстоянию меду точками приложения нагрузки к стержню; - модуль упругости; - площадь брутто поперечного сечения стержня; - предельная величина удлинения (укорочения).

Решили вы, например, сделать себе дом. Самостоятельно, без привлечения архитекторов-конструкторов. И в какой-то момент времени, обычно почти сразу, возникает необходимость рассчитать вес этого дома. И тут начинается череда вопросов: какова величина снеговой нагрузки, какую нагрузку должно выдерживать перекрытие, какой коэффициент использовать при расчёте деревянных элементов. Но прежде, чем дать конкретные цифры, нужно понять, какова зависимость между длительностью воздействия нагрузки и её величиной.
Нагрузки в общем виде делятся на постоянные и временные. А временные в свою очередь на длительные, кратковременные и мгновенные. Наверняка у неподготовленного читателя возникнет вопрос: а какая, собственно, разница, как классифицировать нагрузку? Возьмём, к примеру, нагрузку на междуэтажное перекрытие. В СНиПе прописано нормативное значение 150 кгс на квадратный метр. При внимательном прочтении документа легко заметить, что 150 кгс/м² (полное нормативное значение) применяется при классификации нагрузки как "Кратковременная", но если мы классифицируем её как "длительная", то нагрузка на перекрытие принимается уже всего-то 30 кгс/м²! Почему так происходит? Ответ кроется в глубинах теории вероятности, но для простоты поясню на примере. Представьте вес всего, что есть у вас в комнате. Возможно, вы коллекционер чугунных люков от колодцев, но статистически, если рассматривать тысячи комнат разных людей, то в среднем люди ограничиваются полутонной всевозможных предметов на комнату в 17 м². Полтонны - это не мало для комнаты! Но поделив нагрузку на площадь получим всего-то 30 кг/м². Цифра статистически подтверждена и закреплена в СНиП. А теперь представьте себе, что вы (весом 80 кг) входите в комнату, садитесь на кресло (весом 20 кг) и к вам на колени устраивается жена (весом 50 кг). Получается, на достаточно малую площадь действует нагрузка в 150 кг. Вы, конечно можете в таком тандеме всегда перемещаться по квартире, или просто самостоятельно весить все 150 кг, но вы не можете сидеть на месте неподвижно 10 лет. А значит, что нагрузку в эти 150 кг вы создаёте каждый раз в разном месте, в то время как в другом месте этой нагрузки нет. Т.е. в длительной перспективе вы не выйдите за среднестатистические 500 кг на 17 м², или 30 кг/м², но в кратковременный промежуток вы можете создать нагрузку в 150кг/м². А если вы занимаетесь прыжками на батуте при весе в 150 кг - то это уже будет "Мгновенная" нагрузка, и её расчёт проводится на основании индивидуальных особенностей, ибо статистики для таких случаев просто нету.

Итак, с разницей между терминами немного разобрались, теперь к вопросу: а какая разница для нас, как проектировщиков? Если на доску давить небольшой массой на протяжении десятилетий - она таки прогнётся, а если надавить посильнее, а потом отпустить - доска вернёт своё исходное состояние. Вот именно этот эффект и учитывают присвоением классов нагрузки при расчёте прочности древесины.

Вся информация для статьи приведена из СНиП 2.01.07-85 "Нагрузки и воздействия" . Поскольку я сторонник деревянного домостроения, я также буду ссылаться на частный случай классификации нагрузок по действующему на 2017 год , а так же упомяну Еврокод EN 1991.

Классификация нагрузок по СНиП 2.01.07-85

В зависимости от продолжительности действия нагрузок следует различать постоянные и временные нагрузки.

Постоянные нагрузки

    вес частей сооружений, в том числе вес несущих и ограждающих строительных конструкций;

    вес и давление грунтов (насыпей, засыпок), горное давление;

    гидростатическое давление;

    сохраняющиеся в конструкции или основании усилия от предварительного напряжения так же следует учитывать в расчетах как усилия от постоянных нагрузок.

Временные нагрузки

Временные нагрузки разделяются ещё на три класса:

1. Длительные нагрузки

    вес временных перегородок, подливок и подбетонок под оборудование;

    вес стационарного оборудования: станков, аппаратов, моторов, емкостей, трубопроводов с арматурой, опорными частями и изоляцией, ленточных конвейеров, постоянных подъемных машин с их канатами и направляющими, а также вес жидкостей и твердых тел, заполняющих оборудование;

    давление газов, жидкостей и сыпучих тел в емкостях и трубопроводах, избыточное давление и разрежение воздуха, возникающее при вентиляции шахт;

    нагрузки на перекрытия от складируемых материалов и стеллажного оборудования в складских помещениях, холодильниках, зернохранилищах, книгохранилищах, архивах и подобных помещениях;

    температурные технологические воздействия от стационарного оборудования;

    вес слоя воды на водонаполненных плоских покрытиях;

    вес отложений производственной пыли, если ее накопление не исключено соответствующими мероприятиями;

    нагрузки от людей с пониженными нормативными значениями ;

    снеговые нагрузки с пониженным нормативным значением, определяемым умножением полного нормативного значения на коэффициент:

    • 0,3 - для III снегового района,

      0,5 - для IV района;

      0,6 - для V и VI районов;

    температурные климатические воздействия с пониженными нормативными значениями;

    воздействия, обусловленные деформациями основания, не сопровождающимися коренным изменением структуры грунта, а также оттаиванием вечномерзлых грунтов;

    воздействия, обусловленные изменением влажности, усадкой и ползучестью материалов.

2. Кратковременные нагрузки

    нагрузки от оборудования, возникающие в пускоостановочном, переходном и испытательном режимах, а также при его перестановке или замене;

    вес людей, ремонтных материалов в зонах обслуживания и ремонта оборудования;

    нагрузки от людей , животных, оборудования на перекрытия жилых, общественных и сельскохозяйственных зданий с полными нормативными значениями ;

    нагрузки от подвижного подъемно-транспортного оборудования (погрузчиков, электрокаров, кранов-штабелеров, тельферов, а также от мостовых и подвесных кранов с полным нормативным значением);

    снеговые нагрузки с полным нормативным значением;

    температурные климатические воздействия с полным нормативным значением;

    ветровые нагрузки;

    гололедные нагрузки.

3. Особые нагрузки

    сейсмические воздействия;

    взрывные воздействия;

    нагрузки, вызываемые резкими нарушениями технологического процесса, временной неисправностью или поломкой оборудования;

    воздействия, обусловленные деформациями основания, сопровождающимися коренным изменением структуры грунта (при замачивании просадочных грунтов) или оседанием его в районах горных выработок и в карстовых.

Нормативные нагрузки, упоминаемые выше, приведены в таблице:

В актуализированной на 2011 год версии этого документа пониженные нормативные значения равномерно распределённых нагрузок определяются умножением их полных нормативных значений на коэффициент 0,35.
Такая классификация была принята довольно продолжительное время и уже успела укорениться в сознании "постсоветского инженера". Однако, постепенно, вслед за всей Европой, мы переходим к так называемым Еврокодам.

Классификация нагрузок по Еврокоду EN 1991

По еврокоду всё немного разнообразнее и сложнее. Все расчётные воздействия следует принимать согласно соответствующим разделам EN 1991:

    EN 1991-1-1 Удельный вес, постоянные и временные нагрузки

    EN 1991-1-3 Снеговые нагрузки

    EN 1991-1-4 Ветровые воздействия

    EN 1991-1-5 Температурные воздействия

    EN 1991-1-6 Воздействия при производстве строительных работ

    EN 1991-1-7 Особые воздействия

В соответствии с ТКП ЕN 1990 при рассмотрении воздействий применяют следующую классификацию:

    постоянные воздействия G . Например, воздействия собственного веса, стационарного оборудования, внутренних перегородок, отделки и косвенные воздействия в результате усадки и/или осадки;

    переменные воздействия Q . Например, прилагаемые полезные нагрузки, ветровые, снеговые и температурные нагрузки;

    особые воздействия А . Например, нагрузки от взрывов и ударов.

Если с постоянным воздействием всё более-менее понятно (просто берём объём материала и умножаем его на среднюю плотность этого материала и так по каждому материалу в конструкции дома), то переменные воздействия требуют пояснения. Особые воздействия в контексте частного строительства я рассматривать не буду.
По Еврокоду величина воздействий характеризуется категориями использования строения по таблице 6.1:

Не смотря на всю приведённую информацию Еврокод подразумевает использование национальных приложений, разрабатываемых к каждому разделу Еврокода индивидуально в каждой стране, использующей этот Еврокод. Эти приложения учитывают различные климатические, геологические, исторические и прочие особенности каждой страны, позволяя, тем не менее, придерживаться единых правил и стандартов в расчёте конструкций. К Еврокоду EN1991-1-1 национальное приложение имеется и оно в части величин нагрузок целиком и полностью ссылается на СНиП 2.01.07-85, рассмотренный в первой части этой статьи.

Классификация нагрузок при проектировании деревянных конструкций по Еврокоду EN1995-1-1

На 2017 год в Беларуси действует документ на основе еврокода ТКП EN 1995-1-1-2009 "Проектирование деревянных конструкций" . Поскольку документ относится к Еврокодам, предыдущая классификация по EN 1991 полностью применима и к деревянным конструкциям, однако имеет дополнительное уточнение. Так, в расчётах на прочность и пригодность к эксплуатации следует обязательно учитывать длительность действия нагрузки и влияние влажности!

Классы длительности действия нагрузок характеризуются воздействием постоянной нагрузки, действующей в определённый период времени при эксплуатации сооружения. Для переменного воздействия определяется соответствующий класс на основе оценки взаимодействия между типовой вариацией нагрузки и временем.

Это общая классификация, рекомендованная Еврокодом но, структура Еврокодов, как я уже упоминал, подразумевает использование Национальных Приложений, разрабатываемых в каждой стране индивидуально, и, конечно, для Беларуси это приложение тоже имеется. В нём немного сокращена классификация длительности:

Данная классификация в достаточной степени коррелирует с классификацией по СНиП 2.01.07-85.


Зачем нам знать всё это?
  • Влияние на прочность древесины

В контексте проектирования и расчёта деревянного дома и любого его элемента классификация нагрузок совместно с классом эксплуатации имеет важное значение и может более чем вдвое (!) изменять расчётную прочность древесины. Например, все расчётные значения прочности древесины, помимо прочих коэффициентов, умножаются на так называемый коэффициент модификации kmod:

Как видно из таблицы, в зависимости от класса длительности воздействия нагрузки и условий эксплуатации одна и та же доска I сорта способна выдержать нагрузку, к примеру на сжатие 16,8 МПа при кратковременном воздействии в отапливаемом помещении и лишь 9,1 МПа при постоянной нагрузке в пятом классе условий эксплуатации.

  • Влияние на прочность композитной арматуры

При проектировании фундаментов и железобетонных балок иногда используют композитную арматуру. И если на стальную арматуру длительность действия нагрузок не оказывает существенного влияния, то с композитной всё очень по другому. Коэффициенты влияния длительности нагрузки для АКП приведены в Приложении Л к СП63,13330:

В формуле расчёта сопротивления растяжению, приведённой в табличке выше есть коэффициент yf - это коэффициент надёжности по материалу, принимаемый при расчёте по предельным состояниям второй группы равным 1, а при расчётен по первой группе - равным 1,5. Например, в балке на открытом воздухе прочность стеклопластиковой арматуры может быть 800*0,7*1/1=560 МПа, но при длительной нагрузке 800*0,7*0,3/1=168 МПа.

  • Влияние на величину распределённой нагрузки

Согласно СНиП 2.01.07-85, нагрузки от людей, животных, оборудования на перекрытия жилых, общественных и сельскохозяйственных зданий принимаются с пониженным нормативным значением, если мы относим эти нагрузки к длительным. Если мы их классифицируем как кратковременные - то принимаем полные нормативные значения нагрузок. Такие различия формируются теорией вероятностей и математически просчитаны, но в Своде правил представлены в виде уже готовых ответов и рекомендаций. Такое же влияние классификации есть и на снеговые нагрузки, но снеговые нагрузки я рассмотрю уже в другой статье.

Что нужно считать?

Мы уже разобрались немного с классификацией нагрузок и поняли, что нагрузки на перекрытия и снеговые нагрузки относятся ко временным нагрузкам, но при этом могут относится как к длительным, так и к кратковременным. Причём их величина может значительно отличаться в зависимости от того, к какому классу мы их причислим. Неужели в таком важном вопросе решение зависит от нашего желания? Конечно нет!
В ТКП EN 1995-1-1-2009 "Проектирование деревянных конструкций" есть следующее предписание: если сочетание нагрузки состоит из воздействий, которые принадлежат к разным классам длительности действия нагрузки, то нужно применять значение коэффициентов модификации, которое соответствует воздействию меньшей длительности, например для комбинации собственного веса и кратковременной нагрузки применяется значение коэффициента, соответствующего кратковременной нагрузке.
В СП 22.13330.2011 "Основания зданий и сооружений" указание таково: нагрузки на перекрытия и снеговые нагрузки, которые согласно СП 20.13330 могут относиться как к длительным, так и к кратковременным, при расчете оснований по несущей способности считают кратковременными, а при расчете по деформациям - длительными. Нагрузки от подвижного подъемно-транспортного оборудования в обоих случаях считают кратковременными.

По характеру приложения: сосредоточенные и распределенные.

По продолжительности действий во времени: переменные и постоянные.

По характеру действия: статические и динамические.

Постоянные нагрузки:

    Вес части зданий и сооружений, в том числе вес несущих и ограждающих строительных конструкций;

    Вес и давление грунтов, горное давление;

    Воздействие предварительного напряжения в конструкциях;

Временные нагрузки: Вес временных перегородок; Вес стационарного оборудования: станков, аппаратов; Нагрузки на перекрытия жилых и общественных зданий с пониженными нормативными значениями; Нагрузки на перекрытия жилых в складских помещениях, холодильниках, зернохранилищ, архивах, библиотеках и подсобных зданиях и помещениях; Снеговые нагрузки с пониженным расчетным значением;

Кратковременные нагрузки : Нагрузки на перекрытия жилых и общественных зданий с полными нормативными значениями; Снеговые нагрузки с полным расчетным значением; Нагрузки от подвижно подъемно-транспортного оборудования (мостовых и подвесных кранов, тельферов, погрузчиков); Нагрузки, возникающие при изготовлении, перевозе и возведении конструкций, при монтаже и перестановке оборудования, а также нагрузки от веса временно складируемых на строительстве изделий и материалов; Нагрузки от оборудования, возникающие в пускоостановочном, переходном и испытательном режиме; Ветровые нагрузки; Температурные и климатические воздействия;

Особые нагрузки: Сейсмические и взрывные воздействия; Нагрузки, вызываемые резким нарушением технологического процесса, временной неисправности или поломкой оборудования; Воздействия неравномерных деформаций, сопровождающиеся изменением структуры грунта;

  1. Работа центрально сжатых колонн под нагрузкой и предпосылки для расчета по несущей способности. Расчет центрально сжатых колонн (стоек).

Центрально-сжатыми называются элементы, нагрузка на которые действует по центру тяжести сечения (в колоннах с симметричным сечением центр тяжести сечения принимается совпадающим с геометрическим центром). Напряженно-деформированное состояние центрально-сжатых колонн и характер их разрушения зависят от многих факторов: материала, размеров и формы поперечного сечения, длины, способов закрепления концов. При продольном или поперечном изгибе разрушение элемента происходит оттого, что напряжения в его крайних волокнах достигают предельных величин, и материал разрушается. Продольному изгибу в той или иной степени подвержены все сжатые элементы, его проявление зависит от их гибкости и материала, из которого изготовлен сжатый элемент. Стальные и деревянные колонны, как правило, имеют небольшие размеры поперечного сечения и являются более гибкими, а железобетонные и каменные имеют более значительные размеры поперечного сечения и, следовательно, обладают меньшей гибкостью. Нормы учитывают безопасные величины продольного изгиба - это и положено в основу расчета колонн.

Расчет:

    Выбираем расчетную схему колонны;

    По СНиПу или справочнику находим расчетное сопротивление: R y = 24,5 Кн

    Находим площадь поперечного сечения: А

    Определяем коэффициент продольного изгиба

    Определяем расчетную длину стержня: L ef = µ*L 0

    По сортаменту определяем моменты инерции сечения относительно главных центральных осей: J x , см 4 ; J y , см 4

    Находим минимальный радиус инерции: i min = √ J min / √A

    Определяем гибкость стрежня: λ = μ * L 0 / i min

    Коэффициент продольного изгиба (φ) определяется в зависимости от гибкости;

    Несущая способность определяется величиной допускаемого значения сжимающей силы.

Внешние силы в сопромате делятся на активные и реактивные (реакции связей).Нагрузки – это активные внешние силы.

Нагрузки по способу приложения

По способу приложения нагрузки бывают объемными (собственный вес, силы инерции), действующими на каждый бесконечно малый элемент объема, и поверхностными. Поверхностные нагрузки делятся на сосредоточенные нагрузки ираспределенные нагрузки .

Распределенные нагрузки характеризуются давлением - отношением силы, действующей на элемент поверхности по нормали к ней, к площади данного элемента и выражаются в Международной системе единиц (СИ) в паскалях, мегапаскалях (1 ПА = 1 Н/м2; 1 МПа = 106 Па) и т.д., а в технической системе – в килограммах силы на квадратный миллиметр и т.д. (кгс/мм2, кгс/см2).

В сопромате часто рассматриваются поверхностные нагрузки , распределенные по длине элемента конструкции. Такие нагрузки характеризуются интенсивностью, обозначаемой обычно q и выражаемой в ньютонах на метр (Н/м, кН/м) или в килограммах силы на метр (кгс/м, кгс/см) и т.д.

Нагрузки по характеру изменения во времени

По характеру изменения во времени выделяют статические нагрузки - нарастающие медленно от нуля до своего конечного значения и в дальнейшем не изменяющиеся; идинамические нагрузки вызывающие большие силы инерции.

28.Динамическое, циклическое нагружение, понятие предела выносливости.

Динамическая нагрузка – нагрузка, которая со- провождается ускорением частиц рассматри- ваемого тела или соприкасающихся с ним де- талей. Динамическое нагружение возникает при приложении быстро возрастающих усилий или в случае ускоренно- го движения исследуемого тела. Во всех этих случаях необходимо учитывать силы инерции и возникающее движение масс системы. Кроме того, динамические нагрузки можно подразделить на ударные и повторно-перемен- ные.

Ударная нагрузка (удар) – нагружение, при ко- тором ускорения частиц тела резко изменяют свою величину за очень малый промежуток времени (внезапное приложение нагрузки). Заметим, что, хотя удар и относится к динамическим видам нагружения, в ряде случаев при расчете на удар силами инерции пренебрегают.

Повторно-переменное (циклическое) нагруже- ние – нагрузки, меняющиеся во времени по ве- личине (а возможно и по знаку).

Циклическое нагружение-изменение механических и физических свойств материала под длительным действием циклически изменяющихся во времени напряжений и деформаций.

Преде́л выно́сливости (также преде́л уста́лости) - в науках о прочности: одна из прочностных характеристик материала, характеризующих его выносливость , то есть способность воспринимать нагрузки, вызывающие циклические напряжения в материале.

29.Понятие усталости материалов, факторы, влияющие на устойчивость к усталостному разрушению.

Усталость материала - в материаловедении - процесс постепенного накопления повреждений под действием переменных (часто циклических) напряжений, приводящий к изменению его свойств, образованию трещин, их развитию и разрушению материала за указанное время.

Влияние концентрации напряжений

В местах резкого изменения поперечных размеров детали, отверстий, проточек, пазов, резьбы и т.д., как показано в п. 2.7.1, возникает местное повышение напряжений, значительно снижающее предел выносливости по сравнению с таковым для гладких цилиндрических образцов. Это снижение учитывается введением в расчеты эффективного коэффициента концентрации напряжений , представляющего отношение предела выносливости гладкого образца при симметричном цикле к пределу выносливостиобразца тех же размеров, но имеющего тот или иной концентратор напряжения:

.

2.8.3.2. Влияние размеров детали

Экспериментально установлено, что с увеличением размеров испытуемого образца предел его выносливости понижается (масштабный эффект) . Это объясняется тем, что с увеличением размеров возрастает вероятность неоднородности структуры материалов и его внутренних дефектов (раковины, газовые включения), а также тем, что при изготовлении образцов малого размера имеет место упрочнение (наклеп) поверхностного слоя на относительно большую глубину, чем у образцов больших размеров.

Влияние размеров деталей на значение предела выносливости учитывается коэффициентом (масштабный фактор) , представляющим собой отношение предела выносливости детали заданных размеров к пределу выносливостилабораторного образца подобной конфигурации, имеющего малые размеры:

.

2.8.3.3. Влияние состояния поверхности

Следы режущего инструмента, острые риски, царапины являются очагом возникновения усталостных микротрещин, что приводит к снижению предела выносливости материала.

Влияние состояния поверхности на предел выносливости при симметричном цикле характеризуется коэффициентом качества поверхности , который представляет собой отношение предела выносливости детали с данной обработкой поверхности к пределу выносливоститщательно полированного образца:

.

2.8.3.4. Влияние поверхностного упрочнения

Различные способы поверхностного упрочнения (механическое упрочнение, химикотермическая и термическая обработка) могут существенно повысить значение коэффициента качества поверхности (до 1,5 … 2,0 и более раз вместо 0,6 … 0,8 раз для деталей без упрочнения). Это учитывается при расчетах введением коэффициента .

2.8.3.5. Влияние асимметрии цикла

Причиной усталостного разрушения детали являются длительно действующие переменные напряжения. Но, как показали эксперименты, с увеличением прочностных свойств материала увеличивается их чувствительность к асимметрии цикла, т.е. постоянная составляющая цикла «вносит свой вклад» в снижение усталостной прочности. Этот фактор учитывается коэффициентом.

Классификация Внешних Сил (Нагрузок) Сопромат

Внешние силы в сопромате делятся на активные и реактивные (реакции связей).Нагрузки – это активные внешние силы.

Нагрузки по способу приложения

По способу приложения нагрузки бывают объемными (собственный вес, силы инерции), действующими на каждый бесконечно малый элемент объема, и поверхностными. Поверхностные нагрузки делятся на сосредоточенные нагрузки и распределенные нагрузки .

Распределенные нагрузки характеризуются давлением - отношением силы, действующей на элемент поверхности по нормали к ней, к площади данного элемента и выражаются в Международной системе единиц (СИ) в паскалях, мегапаскалях (1 ПА = 1 Н/м2; 1 МПа = 106 Па) и т.д., а в технической системе – в килограммах силы на квадратный миллиметр и т.д. (кгс/мм2, кгс/см2).

В сопромате часто рассматриваются поверхностные нагрузки , распределенные по длине элемента конструкции. Такие нагрузки характеризуются интенсивностью, обозначаемой обычно q и выражаемой в ньютонах на метр (Н/м, кН/м) или в килограммах силы на метр (кгс/м, кгс/см) и т.д.

Нагрузки по характеру изменения во времени

По характеру изменения во времени выделяют статические нагрузки - нарастающие медленно от нуля до своего конечного значения и в дальнейшем не изменяющиеся; и динамические нагрузки вызывающие большие силы инерции.

Допущения сопромата

Допущения Сопромата Сопромат

При построении теории расчета на прочность, жесткость и устойчивостьпринимаются допущения, связанные со свойствами материалов и с деформацией тела.

Допущения, связанные со свойствами материалов

Сначала рассмотрим допущения, связанные со свойствами материалов :

допущение 1 : материал считается однородным (его физико-механические свойства считаются одинаковыми во всех точках;

допущение 2 : материал полностью заполняет весь объем тела, без каких-либо пустот (тело рассматривается как сплошная среда). Это допущение дает возможность применять при исследовании напряженно-деформированного состояния тела методы дифференциального и интегрального исчислений, которые требуют непрерывности функции в каждой точке объема тела;

допущение 3 : материал изотропный, то есть его физико-механические свойства в каждой точке одинаковы во всех направлениях. Анизотропные материалы – физико-механические свойства которых изменяются в зависимости от направления (например, дерево);

допущение 4 : материал является идеально упругим (после снятия нагрузки все деформации полностью исчезают).

Допущения, связанные с деформацией

Теперь рассмотрим основные допущения, связанные с деформацией тела .

допущение 1 : деформации считаются малыми. Из этого допущения следует, что при составлении уравнений равновесия, а также при определении внутренних сил можно не учитывать деформацию тела. Это допущение иногда называют принципом начальных размеров. Например, рассмотрим стержень, заделанный одним концом в стену и нагруженный на свободном конце сосредоточенной силой (рис. 1.1).

Момент в заделке, определенный из соответствующего уравнения равновесия методом теоретической механики, равен: . Однако прямолинейное положение стержня не является его положением равновесия. Под действием силы (P) стержень изогнется, и точка приложения нагрузки сместится и по вертикали, и по горизонтали. Если записать уравнение равновесия стержня для деформированного (изогнутого) состояния, то истинный момент, возникающий в заделке, окажется равным: . Принимая допущение о малости деформаций, мы полагаем, что перемещением (w) можно пренебречь по сравнению с длиной стержня (l), то есть , тогда . Допущение возможно не для всех материалов.

допущение 2 : перемещения точек тела пропорциональны нагрузкам, вызывающим эти перемещения (тело является линейно деформируемым). Для линейно деформируемых конструкций справедлив принцип независимости действия сил (принцип суперпозиции ): результат действия группы сил не зависит от последовательности нагружения ими конструкции и равен сумме результатов действия каждой из этих сил в отдельности. В основе этого принципа лежит также предположение об обратимости процессов нагрузки и разгрузки.

Похожие статьи

© 2024 rsrub.ru. О современных технологиях кровли. Строительный портал.