Оборудование космических аппаратов. Краткий словарь некоторых космических терминов и названий

Возможно, произнося без каких-либо пояснений мудрёные словечки, профессионалы-ракетчики (и причисляющиеся к ним) видят себя отдельной интеллектуальной кастой. Но как быть обычному человеку, который, интересуясь ракетами и космосом, пытается слёту овладеть статьёй, пересыпанной непонятными сокращениями? Что такое БОКЗ, СОТР или ДПК? Что такое «мятый газ» и почему ракета «ушла за бугор», а носитель и космический корабль — два совершенно разных изделия — носят одно имя «Союз»? Кстати, БОКЗ — это не бокс по-олбански, а блок определения координат звёзд (в просторечии — звёздный датчик), СОТР — не яростное сокращение выражения «в порошок сотру», а система обеспечения теплового режима , а ДПК — не мебельный «древесно-полимерный композит», а самый что ни на есть ракетный (и не только) дренажно-предохранительный клапан . Но что делать, если ни в сноске, ни в тексте нет никаких расшифровок? Это проблема… Причём не столько читателя, сколько «написанта» статьи: второй раз его читать не будут! Чтобы избежать сей горькой участи, мы взяли на себя скромный труд по составлению краткого словарика ракетно-космических терминов, сокращений и названий. Разумеется, он не претендует на полноту, а в каких-то местах — и на строгость формулировок. Но, мы надеемся, он поможет читателю, интересующемуся космонавтикой. И кроме того, словарик можно дополнять и уточнять бесконечно — ведь космос бесконечен!..

Apollo — американская программа высадки человека на Луну, которая включала также испытательные полёты астронавтов на трёхместном корабле по околоземной и окололунной орбите в 1968—1972 годах.

Ariane-5 — название европейской одноразовой ракеты-носителя тяжёлого класса, предназначенной для выведения полезных грузов на околоземные орбиты и отлётные траектории. C 4 июня 1996 года до 4 мая 2017 года выполнила 92 миссии, из них 88 — полностью успешно.

Atlas V — название серии американских одноразовых ракет-носителей среднего класса, созданных компанией Lockheed Martin. C 21 августа 2002 года до 18 апреля 2017 года выполнена 71 миссия, из них 70 — успешно. Используется преимущественно для запуска космических аппаратов по заказам американских правительственных ведомств.

ATV (Automated Tranfer Vehicle) — название европейского одноразового автоматического транспортного корабля, предназначенного для снабжения МКС грузами и совершавшего полёты в период с 2008 по 2014 год (выполнено пять миссий).

BE-4 (Blue Origin Engine) — мощный маршевый жидкостный ракетный двигатель тягой 250 тс на уровне моря, работающий на кислороде и метане и разрабатываемый с 2011 года компанией Blue Origin для установки на перспективных ракетах-носителях Vulcan и New Glenn. Позиционируется как замена российскому двигателю РД-180. Первые комплексные огневые испытания намечены на первое полугодие 2017 года.

CCP (Commercial Crew Program) — современная государственная американская коммерческая пилотируемая программа, проводимая NASA и способствующая доступу частных промышленных фирм к технологиям изучения и освоения космического пространства.

CNSA (China National Space Agency) — английская аббревиатура государственного агентства, осуществляющего координацию работ по изучению и освоению космического пространства в КНР.

CSA (Canadian Space Agency) — государственное агентство, осуществляющее координацию работ по изучению космоса в Канаде.

Cygnus — название американского одноразового автоматического транспортного корабля, созданного компанией Orbital для снабжения МКС запасами и грузами. С 18 сентября 2013 года по 18 апреля 2017 года выполнено восемь миссий, из них семь — успешно.

Delta IV — название серии американских одноразовых ракет-носителей среднего и тяжёлого классов, созданных компанией Boeing в рамках программы EELV. C 20 ноября 2002 года по 19 марта 2017 года проведено 35 миссий, из них 34 — успешно. В настоящее время используется исключительно для запуска космических аппаратов по заказам американских правительственных ведомств.

Dragon — название серии американских частично многоразовых транспортных кораблей, разрабатываемых частной компанией SpaceX по контракту с NASA в рамках программы CCP. Способен не только доставлять грузы на МКС, но и возвращать их обратно на Землю. С 8 декабря 2010 года по 19 февраля 2017 года запущено 12 беспилотных кораблей, из них 11 — успешно. Начало лётных испытаний пилотируемого варианта намечено на 2018 год.

Dream Chaser — название американского многоразового транспортного орбитального ракетоплана, разрабатываемого с 2004 года компанией Sierra Nevada для снабжения орбитальных станций запасами и грузами (а в будущем, в семиместном варианте, — и для смены экипажа). Начало лётных испытаний намечено на 2019 год.

EELV (Evolved Expendable Launch Vehicle) — программа эволюционного развития одноразовых ракет-носителей для использования (прежде всего) в интересах Министерства обороны США. В рамках программы, начатой в 1995 году, созданы носители семейств Delta IV и Atlas V; с 2015 года к ним присоединился Falcon 9.

EVA (Extra-Vehicular Activity) — английское название внекорабельной деятельности (ВКД) астронавтов (работы в открытом космосе или на поверхности Луны).

FAA (Federal Aviation Administration) — Федеральное управление гражданской авиации, регулирующее в США юридические вопросы коммерческих космических полётов.

Falcon 9 — название серии американских частично многоразовых носителей среднего класса, созданных частной компанией SpaceX. С 4 июня 2010 года по 1 мая 2017 года проведено 34 пуска ракет трёх модификаций, из них 31 — полностью успешный. До недавнего времени Falcon 9 служил как для выведения на орбиту беспилотных грузовых кораблей Dragon для снабжения МКС, так и для коммерческих пусков; сейчас включён в программу выведения на орбиту космических аппаратов по заказу американских правительственных ведомств.

Falcon Heavy — название американской частично многоразовой ракеты-носителя тяжёлого класса, разрабатываемой компанией SpaceX на основе ступеней носителя Falcon-9. Первый полёт запланирован на осень 2017 года.

Gemini — название второй американской пилотируемой космической программы, в ходе которой астронавты на двухместном корабле совершали околоземные полёты в 1965-1966 годах.

H-2A (H-2B) — варианты японской одноразовой ракеты-носителя среднего класса, предназначенной для выведения полезных грузов на околоземные орбиты и отлётные траектории. C 29 августа 2001 года по 17 марта 2017 года выполнено 33 пуска варианта H-2A (из них 32 успешных) и шесть пусков H-2B (все успешные).

HTV (H-2 Transfer Vehicle), он же «Коунотори», — название японского автоматического транспортного корабля, предназначенного для снабжения МКС грузами и совершающего полёты с 10 сентября 2009 года (выполнено шесть миссий, по плану осталось три).

JAXA (Japan Aerospace Exploration Agency) — агентство, осуществляющее координацию работ по исследованию космического пространства в Японии.

Mercury — название первой американской пилотируемой космической программы, в ходе которой астронавты на одноместном корабле совершали околоземные полёты в 1961-1963 годах.

NASA (National Aeronautics and Space Administration) — государственное управление, осуществляющее координацию работ по авиации и исследованиям космического пространства в США.

New Glenn — название частично многоразовой ракеты-носителя тяжёлого класса, разрабатываемой компанией Blue Origin для коммерческих запусков и использования в лунной транспортной системе. Анонсирована в сентябре 2016 года, первый пуск планируется на 2020-2021 годы.

Orion MPCV (Multi-Purpose Crew Vehicle) — название многофункциональных пилотируемых кораблей, разрабатываемых NASA в рамках программы Exploration и предназначенных для полётов астронавтов на МКС и за пределы низкой околоземной орбиты. Начало лётных испытаний намечено на 2019 год.

Skylab — название первой американской космической станции, на которой в 1973-1974 годах работали три экспедиции астронавтов.

SLS (Space Launch System) — название американского семейства ракет-носителей сверхтяжёлого класса, разрабатываемых NASA в рамках программы Exploration и предназначенных для запуска элементов космической инфраструктуры (включая пилотируемые корабли Orion) на отлётные траектории. Начало лётных испытаний намечено на 2019 год.

SpaceShipOne (SS1) — название экспериментального многоразового суборбитального ракетоплана, созданного фирмой Scaled Composites, который стал первым негосударственным пилотируемым аппаратом, преодолевшим линию Кармана и добравшимся до космоса. Теоретически должен был нести экипаж из трёх человек, фактически управлялся одним пилотом.

SpaceShipTwo (SS2) — название многоразового многоместного (два пилота и шесть пассажиров) суборбитального ракетоплана фирмы Virgin Galactic, предназначенного для осуществления коротких туристических путешествий в космос.

Space Shuttle, иначе STS (Space Transportation System) — серия американских многоразовых пилотируемых транспортных космических кораблей, созданных по заказу NASA и Министерства обороны по государственной программе и совершивших 135 миссий в околоземное космическое пространство в период с 1981 по 2011 год.

Starliner (CST-100) — название американского частично многоразового пилотируемого транспортного корабля, разрабатываемого компанией Boeing по контракту с NASA в рамках программы CCP. Начало лётных испытаний намечено на 2018 год.

ULA (United Launch Alliance) — «Объединённый пусковой альянс», совместное предприятие, созданное в 2006 году компаниями Lockheed Martin и Boeing для экономически эффективной эксплуатации ракет-носителей Delta IV и Atlas V.

Vega — название европейской ракеты-носителя лёгкого класса, разработанной в международной кооперации при решающем участии Италии (компания Avio) для выведения полезных грузов на околоземные орбиты и отлётные траектории. С 13 февраля 2012 года по 7 марта 2017 года выполнено девять миссий (все — успешно).

Vulcan — название перспективной американской ракеты, предназначенной для замены носителей Delta IV и Atlas V. Разрабатывается с 2014 года «Объединённым пусковым альянсом» ULA. Первый пуск планируется на 2019 год.

X-15 — американский экспериментальный ракетоплан, созданный фирмой North American по заказу NASA и Министерства обороны для изучения условий полёта на гиперзвуковых скоростях и входа в атмосферу крылатых аппаратов, оценки новых конструкторских решений, теплозащитных покрытий и психофизиологических аспектов управления в верхних слоях атмосферы. Построено три ракетоплана, которые в 1959—1968 годах совершили 191 полёт, поставив несколько мировых рекордов скорости и высоты (в том числе 22 августа 1963 года достигнута высота 107 906 м).

Абляция — процесс уноса массы с поверхности твёрдого тела потоком набегающего газа, сопровождаемый поглощением теплоты. Лежит в основе абляционной теплозащиты, предохраняя конструкцию от перегрева.

«Ангара» — название российского КРК, а также семейства одноразовых модульных ракет-носителей лёгкого, среднего и тяжёлого классов, предназначенных для выведения полезных грузов на околоземные орбиты и отлётные траектории. Первый пуск лёгкой ракеты «Ангара-1.2ПП» состоялся 9 июля 2014 года, первый пуск тяжёлого носителя «Ангара-А5» — 23 декабря 2014 года.

Апогей — наиболее удалённая от центра Земли точка орбиты спутника (естественного или искусственного).

Аэродинамическое качество — безразмерная величина, отношение подъёмной силы летательного аппарата к силе лобового сопротивления.

Баллистическая траектория — путь, по которому движется тело при отсутствии действия на него аэродинамических сил.

Баллистическая ракета — летательный аппарат, который после отключения двигателя и выхода за пределы плотных слоёв атмосферы летит по баллистической траектории.

«Восток» — название первого советского одноместного пилотируемого корабля, на котором космонавты совершали полёты в период с 1961 по 1963 год. Также — открытое наименование серии советских одноразовых ракет-носителей лёгкого класса, созданных на базе межконтинентальной баллистической ракеты Р-7 и использовавшихся в период с 1958 по 1991 год.

«Восход» — название многоместной модификации советского пилотируемого корабля «Восток», на которой космонавты совершили два полёта в 1964—1965 годах. Также — открытое наименование серии советских одноразовых ракет-носителей среднего класса, использовавшихся в период с 1963 по 1974 год.

Газовый ракетный двигатель (газовое сопло) — устройство, которое служит для преобразования в тягу потенциальной энергии сжатого рабочего тела (газа).

Гибридный ракетный двигатель (ГРД) — частный случай химического реактивного двигателя; устройство, использующее для создания тяги химическую энергию взаимодействия компонентов топлива, пребывающих в различном агрегатном состоянии (например, жидкий окислитель и твёрдое горючее). На таком принципе построены двигатели ракетопланов SpaceShipOne и SpaceShipTwo.

Гномон — астрономический инструмент в виде вертикальной стойки, позволяющий по наименьшей длине тени определить угловую высоту солнца на небе, а также направление истинного меридиана. Фотогномон с цветовой калибровочной шкалой служил для документирования образцов лунного грунта, собранного во время миссий Apollo.

ЕКА (Европейское космическое агентство) — организация, осуществляющая координацию деятельности европейских государств по изучению космического пространства.

Жидкостный ракетный двигатель (ЖРД) — частный случай химического реактивного двигателя; устройство, использующее для создания тяги химическую энергию взаимодействия жидких компонентов топлива, хранящихся на борту летательного аппарата.

Капсула — одно из названий бескрылого спускаемого аппарата искусственных спутников и космических кораблей.

Космический аппарат — общее название различных технических устройств, предназначенных для выполнения целевых задач в космическом пространстве.

Космический ракетный комплекс (КРК) — термин, характеризующий совокупность функционально связанных элементов (технического и стартового комплекса космодрома, измерительных средств космодрома, наземного комплекса управления космического аппарата, ракеты-носителя и разгонного блока), обеспечивающих выведение космического аппарата на целевую траекторию.

Линия Кармана — согласованная на международном уровне условная граница космоса, пролегающая на высоте 100 км (62 мили) над уровнем моря.

«Мир» — название модульной советской/российской орбитальной космической станции, которая летала в 1986-2001 годах, принимая многочисленные советские (российские) и международные экспедиции.

МКС (Международная космическая станция) — название пилотируемого комплекса, который был создан на околоземной орбите усилиями России, США, Европы, Японии и Канады для проведения научных исследований, связанных с условиями длительного пребывания человека в космическом пространстве. Англоязычная аббревиатура ISS (International Space Station).

Многоступенчатая (составная) ракета — устройство, у которого по мере израсходования топлива происходит последовательный сброс использованных и ненужных для дальнейшего полёта элементов конструкции (ступеней).

Мягкая посадка — касание космического аппарата поверхности планеты или другого небесного тела, при котором вертикальная скорость позволяет обеспечить сохранность конструкции и систем аппарата и/или комфортные условия для экипажа.

Наклонение орбиты — угол между плоскостью орбиты естественного или искусственного спутника и плоскостью экватора тела, вокруг которого обращается спутник.

Орбита — траектория (чаще всего эллиптическая), по которой одно тело (например, естественный спутник или космический аппарат) движется относительно центрального тела (Солнца, Земли, Луны и т.д.). В первом приближении околоземная орбита характеризуется такими элементами, как наклонение, высота перигея и апогея и период обращения.

Первая космическая скорость — наименьшая скорость, которую необходимо придать телу в горизонтальном направлении у поверхности планеты, чтобы оно вышло на круговую орбиту. Для Земли — примерно 7,9 км/с.

Перегрузка — векторная величина, отношение суммы силы тяги и/или аэродинамической силы к весу летательного аппарата.

Перигей — ближайшая к центру Земли точка орбиты спутника.

Период обращения — промежуток времени, в течение которого спутник совершает полный оборот вокруг центрального тела (Солнца, Земли, Луны и т. д.)

Пилотируемый транспортный корабль нового поколения (ПТК НП) «Федерация» — многоразовый четырёх-шестиместный корабль, разрабатываемый Ракетно-космической корпорацией «Энергия» для обеспечения доступа в космос с российский территории (с космодрома Восточный), доставки людей и грузов на орбитальные станции, полётов на полярную и экваториальную орбиту, исследования Луны и посадки на неё. Создаётся в рамках ФКП-2025, начало лётных испытаний намечено на 2021 год, первый пилотируемый полёт со стыковкой с МКС должен состояться в 2023 году.

«Прогресс» — название серии советских (российских) беспилотных автоматических кораблей для доставки топлива, грузов и припасов на космические станции «Салют», «Мир» и МКС. С 20 января 1978 года по 22 февраля 2017 года запущено 135 кораблей различных модификаций, из них 132 — успешно.

«Протон-М» — название российской одноразовой ракеты-носителя тяжёлого класса, предназначенной для выведения полезных грузов на околоземные орбиты и отлётные траектории. Создана на базе «Протона-К»; первый полёт данной модификации состоялся 7 апреля 2001 года. До 9 июня 2016 года выполнено 98 пусков, из них 9 полностью и 1 частично неудачных.

Разгонный блок (РБ), наиболее близкий по смыслу западный эквивалент — «верхняя ступень» (upper stage), — ступень ракеты-носителя, предназначенная для формирования целевой траектории космического аппарата. Примеры: Centaur (США), «Бриз-М», «Фрегат», ДМ (Россия).

Ракета-носитель — в настоящее время единственное средство выведения полезной нагрузки (спутника, зонда, космического корабля или автоматической станции) в космическое пространство.

Ракета-носитель сверхтяжёлого класса (РН СТК) — условное наименование российской опытно-конструкторской разработки, предназначенной для создания средства выведения элементов космической инфраструктуры (включая пилотируемые корабли) на отлётные траектории (к Луне и Марсу).

Различные предложения по созданию носителя сверхтяжёлого класса на базе модулей ракет «Ангара-А5В», «Энергия 1К» и «Союз-5». Графика В. Штанина

Ракетный двигатель твёрдого топлива (РДТТ) — частный случай химического реактивного двигателя; устройство, которое использует для создания тяги химическую энергию взаимодействия твёрдых компонентов топлива, хранящихся на борту летательного аппарата.

Ракетоплан — крылатый летательный аппарат (самолёт), использующий для разгона и/или полёта ракетный двигатель.

РД-180 — мощный маршевый жидкостный ракетный двигатель тягой 390 тс на уровне моря, работающий на кислороде и керосине. Создан российским НПО «Энергомаш» по заказу американской фирмы Pratt and Whitney для установки на носители семейства Atlas III и Atlas V. Серийно производится в России и поставляется в США с 1999 года.

Роскосмос — краткое название Федерального космического агентства (в период с 2004 по 2015 год, с 1 января 2016 года — госкорпорация «Роскосмос»), государственной организации, которая осуществляет координацию работ по изучению и освоению космического пространства в России.

«Салют» — название серии советских долговременных орбитальных станций, которые летали по околоземной орбите в период с 1971 по 1986 год, принимая советские экипажи и космонавтов из стран социалистического содружества (программа «Интеркосмос»), Франции и Индии.

«Союз» — название семейства советских (российских) многоместных пилотируемых кораблей для полётов по околоземной орбите. С 23 апреля 1967 года по 14 мая 1981 года 39 кораблей совершали полёт с экипажем на борту. Также — открытое название серии советских (российских) одноразовых ракет-носителей среднего класса, использовавшихся для запуска полезных нагрузок на околоземные орбиты с 1966 по 1976 год.

«Союз-ФГ» — название российской одноразовой ракеты-носителя среднего класса, которая с 2001 года доставляет корабли — пилотируемые (семейства «Союз») и автоматические («Прогресс») — на околоземную орбиту.

«Союз-2» — название семейства современных российских одноразовых ракет-носителей лёгкого и среднего класса, которые с 8 ноября 2004 года выводят различные полезные грузы на околоземные орбиты и отлётные траектории. В вариантах «Союз-ST» с 21 октября 2011 года запускается с европейского космодрома Куру во Французской Гвиане.

«Союз Т» — название транспортного варианта советского пилотируемого корабля «Союз», который с апреля 1978 года по март 1986 года совершил 15 пилотируемых полётов к орбитальным станциям «Салют» и «Мир».

«Союз ТМ» — название модифицированного варианта советского (российского) транспортного пилотируемого корабля «Союз», который с мая 1986 года по ноябрь 2002 года совершил 33 пилотируемых полёта к орбитальным станциям «Мир» и МКС.

«Союз ТМА» — название антропометрического варианта модификации российского транспортного корабля «Союз», созданного для расширения допустимого диапазона роста и веса членов экипажа. С октября 2002 года по ноябрь 2011 года совершил 22 пилотируемых полёта к МКС.

«Союз ТМА-М» — дальнейшая модернизация российского транспортного корабля «Союз ТМА», которая с октября 2010 года по март 2016 года выполнила 20 пилотируемых полётов к МКС.

«Союз МС» — окончательный вариант российского транспортного корабля «Союз», который совершил первую миссию к МКС 7 июля 2016 года.

Суборбитальный полёт — движение по баллистической траектории с кратковременным выходом в космическое пространство. При этом скорость полёта может быть как меньше, так и больше местной орбитальной (вспомним американский зонд Pioneer-3, имевший скорость выше первой космической, но всё равно упавший на Землю).

«Тяньгун» — название серии китайских орбитальных пилотируемых станций. Первая (лаборатория «Тяньгун-1») была запущена 29 сентября 2011 года.

«Шэньчжоу» — название серии современных китайских трёхместных пилотируемых космических кораблей для полётов по околоземной орбите. С 20 ноября 1999 года по 16 октября 2016 года запущено 11 кораблей, из них 7 — с космонавтами на борту.

Химический реактивный двигатель — устройство, в котором энергия химического взаимодействия компонентов топлива (окислителя и горючего) преобразуется в кинетическую энергию реактивной струи, создающей тягу.

Электрический ракетный двигатель (ЭРД) — устройство, в котором для создания тяги рабочее тело (обычно хранящееся на борту летательного аппарата) разгоняется с помощью внешнего подвода электрической энергии (нагрев и расширение в реактивном сопле либо ионизация и разгон заряженных частиц в электрическом (магнитном) поле).

Ионный электроракетный двигатель имеет малую тягу, но большую экономичность, обусловленную высокой скоростью истечения рабочего тела

Система аварийного спасения — совокупность устройств для спасения экипажа космического корабля в случае аварии ракеты-носителя, т. е. при возникновении ситуации, в которой невозможен вывод на целевую траекторию.

Скафандр — индивидуальный герметичный костюм, обеспечивающий условия для работы и жизнедеятельности космонавта в разрежённой атмосфере или в космическом пространстве. Различаются аварийно-спасательные и скафандры для внекорабельной деятельности.

Спускаемый (возвращаемый) аппарат — часть космического аппарата, предназначенная для спуска и посадки на поверхность Земли или другого небесного тела.

Специалисты группы поиска и спасения рассматривают спускаемый аппарат китайского зонда «Чанъэ-5-Т1», вернувшийся на Землю после облёта Луны. Фото CNSA

Тяга — реактивная сила, приводящая в движение летательный аппарат, на котором установлен ракетный двигатель.

Федеральная космическая программа (ФКП) — основной документ Российской Федерации, определяющий перечень основных задач в области гражданской космической деятельности и их финансирование. Составляется на десятилетие. Текущая ФКП-2025 действует в период с 2016 по 2025 год.

«Феникс» — название опытно-конструкторской работы в рамках ФКП-2025 по созданию ракеты-носителя среднего класса для использования в составе космических ракетных комплексов «Байтерек», «Морской старт» и РН СТК.

Характеристическая скорость (ХС, ΔV) — скалярная величина, характеризующая изменение энергии летательного аппарата при использовании ракетных двигателей. Физический смысл — скорость (измеряется в метрах в секунду), которую приобретёт аппарат, двигаясь по прямой только под действием силы тяги при определённых затратах топлива. Используется (в том числе) для оценки затрат энергии, потребных на выполнение ракетодинамических маневров (потребная ХС), либо располагаемой энергетики, определяемой бортовым запасом топлива или рабочего тела (располагаемая ХС).

Вывоз на старт ракеты-носителя «Энергия» с орбитальным кораблём «Буран»

«Энергия» — «Буран» — советский КРК с ракетой-носителем сверхтяжёлого класса и многоразовым крылатым орбитальным кораблём. Разрабатывался с 1976 года как ответ американской системе Space Shuttle. В период с мая 1987 года по ноябрь 1988 года совершил два полёта (с массогабаритным аналогом полезной нагрузки и с орбитальным кораблём соответственно). Программа закрыта в 1993 году.

ЭПАС (экспериментальный полёт «Аполлон» — «Союз») — совместная советско-американская программа, в ходе которой в 1975 году пилотируемые корабли «Союз» и Apollo совершили взаимный поиск, стыковку и совместный полёт по околоземной орбите. В США известна как ASTP (Apollo-Soyuz Test Project).

Вакуум, невесомость, жесткое излучение, удары микрометеоритов, отсутствие опоры и выделенных направлений в пространстве -- все это факторы космического полета, практически не встречающиеся на Земле. Чтобы совладать с ними, космические аппараты оснащают множеством приспособлений, о которых в обыденной жизни никто и не задумывается. Водителю, например, обычно не надо заботиться об удержании автомобиля в горизонтальном положении, а для поворота достаточно покрутить баранку. В космосе же перед любым маневром приходится проверять ориентацию аппарата по трем осям, а повороты выполняются двигателями -- ведь нет дороги, от которой можно оттолкнуться колесами. Или вот, например, двигательная установка -- ее упрощенно представляют баками с топливом и камерой сгорания, из которой вырываются языки пламени. Между тем в ее состав входит множество приспособлений, без которых двигатель в космосе не заработает, а то и вовсе взорвется. Все это делает космическую технику неожиданно сложной по сравнению с земными аналогами. Детали ракетного двигателя

На большинстве современных космических аппаратов стоят жидкостные ракетные двигатели. Однако в невесомости непросто обеспечить для них устойчивую подачу топлива. В отсутствие силы тяжести любая жидкость под влиянием сил поверхностного натяжения стремится принять форму шара. Обычно внутри бака образуется множество плавающих шаров. Если компоненты топлива будут поступать неравномерно, чередуясь с газом, заполняющим пустоты, горение будет неустойчивым. В лучшем случае произойдет остановка двигателя -- он буквально «подавится» газовым пузырем, а в худшем -- взрыв. Поэтому для запуска двигателя нужно прижать топливо к заборным устройствам, отделив жидкость от газа. Один из способов «осадить» топливо -- включить вспомогательные двигатели, например, твердотопливные или работающие на сжатом газе. На короткое время они создадут ускорение, и жидкость по инерции прижмется к топливозаборнику, одновременно освободившись от пузырьков газа. Другой способ -- добиться, чтобы первая порция жидкости всегда оставалась в заборнике. Для этого возле него можно поставить сетчатый экран, который за счет капиллярного эффекта будет удерживать часть топлива для запуска двигателя, а когда он заработает, остальное «осядет» по инерции, как в первом варианте.

Но есть и более радикальный способ: залить топливо в эластичные мешки, помещенные внутрь бака, после чего закачивать в баки газ. Для наддува обычно используют азот или гелий, запасая их в баллонах высокого давления. Конечно, это лишний вес, зато при небольшой мощности двигателя можно избавиться от топливных насосов -- давление газа обеспечит подачу компонентов по трубопроводам в камеру сгорания. Для более мощных двигателей без насосов с электрическим, а то и с газотурбинным приводом не обойтись. В последнем случае турбину раскручивает газогенератор -- маленькая камера сгорания, сжигающая основные компоненты или специальное топливо.

Маневрирование в космосе требует высокой точности, а значит, нужен регулятор, который постоянно корректирует расход топлива, обеспечивая расчетную силу тяги. При этом важно поддерживать правильное соотношение горючего и окислителя. Иначе эффективность двигателя упадет, и вдобавок один из компонентов топлива кончится раньше другого. Расход компонентов измеряют, помещая в трубопроводы небольшие крыльчатки, частота вращения которых зависит от скорости потока жидкости. А в маломощных двигателях расход жестко задается калиброванными шайбами, установленными в трубопроводах.

Для безопасности двигательную установку снабжают аварийной защитой, выключающей неисправный двигатель до того, как он взорвется. Управляет ею автоматика, поскольку в экстренных ситуациях температура и давление в камере сгорания могут меняться очень быстро. В целом двигатели и топливно-трубопроводное хозяйство -- объект повышенного внимания в любом космическом аппарате. Запасом топлива во многих случаях определяется ресурс современных спутников связи и научных зондов. Часто создается парадоксальная ситуация: аппарат полностью исправен, но не может работать из-за исчерпания топлива или, например, утечки газа для наддува баков.

Современные космические аппараты становятся все технологичнее и меньше, и запускать такие спутники тяжелыми ракетами невыгодно. Вот тут и пригодится легкий "Союз". Первый старт и начало летных испытаний - уже в будущем году.

Включаю гидравлику. Испытания начинаем. Перегрузка 0,2, частота 11.

Эта платформа - имитация железнодорожного вагона, на ней ценный груз - ракета. Идет проверка топливного бака ракеты "Союз 2-1В" - на прочность.

"Он должен выдержать всё, все нагрузки. Датчики должны показывать, что внутри не произошло какой-то аварийной ситуации", - рассказывает Борис Баранов, заместитель начальника исследовательско-испытательного комплекса ЦСКБ "Прогресс".

Ракету трясут не переставая 100 часов. Уровень нагрузки постоянно растет. В таких испытаниях создают всё, что может произойти в пути от Самары до места пуска - космодрома.

Испытания закончены, всем спасибо.

Так от испытания к испытанию рождается новая ракета. Двухступенчатый легкий носитель "Союз 2 1В" - на финишной прямой. Это собранная первая ступень, та самая, которая отвечает за отрыв ракеты от земли.

Двигатель НК-33 - мощный и очень экономичный.

Двигатель с легендарной историей. В 1968 году в связки из 34 штук он давал невообразимую мощь лунной ракете Н-1, "царь-ракете", которая должна была лететь на Луну.

Уже тогда реактивная тяга двигателя составляла 154 тонны.

"Ракета не пошла, двигатель остался, и сейчас мы используем его для новых разработок. Он прекрасно работает на всех испытаниях", - рассказал первый заместитель генерального директора, генеральный конструктор ЦСКБ "Прогресс" Равиль Ахметов.

Интерес к этому двигателю и в те - годы был огромен. Часть НК-33 купили американцы, испытали их и даже лицензировали. Уже были произведены несколько запусков носителей с этим двигателем по американской космической программе. Спустя десятилетия в стенах российского ЦСКБ "Прогресс" рождается новая ракета с хорошо отработанным сердцем. "По прошествии времени двигатель отработал без замечаний. Мы решили наши заделы, нашу интеллектуальную собственность реализовать в "Союз 2-1В", - рассказал генеральный директор ЦСКБ "Прогресс" Александр Кирилин. С таким привычным названием "Союз", с такой сложной шифровкой "2-1В". Конструкторы утверждают - "Союз" должен быть во всех модификациях, тем более в легкой. Современные космические аппараты - всё технологичнее и меньше, и запускать такие спутники тяжелыми ракетами невыгодно. "Это проект, где фактически отсутствуют боковые блоки, ракета представляет собой центральный блок, но увеличенный в размерах, всё это позволяет реализовать возможность выведения аппаратов легкого класса на орбиты. Уникальность легкого "Союза" в том, что мы его удачно вписали в существующие стартовые сооружения", - поясняет первый заместитель генерального директора, главный инженер ЦСКБ "Прогресс" Сергей Тюлевин. Легкий "Союз" будет доставлять в космос спутники весом до трех тонн. Первый старт и начало летных испытаний - уже в начале будущего года.

Космический аппарат, одной из основных задач которого является транспортировка людей или оборудования в верхней части земной атмосферы - так называемом, ближнем космосе , называют космическим кораблём (КК) или космическим летательным аппаратом (КЛА) .

Области использования космических аппаратов обуславливают их разделение по следующим группам:

  • суборбитальные;
  • околоземные орбитальные, движущиеся по геоцентрическим орбитам искусственных спутников Земли ;
  • межпланетные (экспедиционные);
  • напланетные.

Принято различать автоматические спутники (ИСЗ) Земли и пилотируемые космические аппараты . К пилотируемым космическим аппаратам, в частности относят все виды пилотируемых космических кораблей (КК) и орбитальных космических станций (ОС). (Несмотря на то, что современные орбитальные станции совершают свой полёт в области ближнего космоса, и формально могут называться «Космическими летательными аппаратами», в сложившейся традиции, их называют «Космическими аппаратами».)

Название «Космический летательный аппарат» иногда также используется для обозначения активных (то есть маневрирующих) ИСЗ, с целью подчёркивания их отличий от пассивных спутников. В большинстве же случаев значения терминов «Космический летательный аппарат» и «Космический аппарат» синонимичны и взаимозаменяемы.

В активно исследуемых в последнее время проектах создания орбитально-гиперзвуковых летательных аппаратов как частей авиационно-космических систем (АКС) часто используют ещё названия воздушно-космический аппарат (ВКА), обозначая космопланы и космолёты АКС, предназначенные для выполнения управляемого полёта, как в безвоздушном космическом пространстве, так и в плотной атмосфере Земли.

В то время как стран, имеющих ИСЗ - несколько десятков, наиболее сложные технологии автоматических возвращаемых и межпланетных КА освоили всего несколько стран - СССР /Россия , США , Китай , Япония , Индия , Европа /ESA . Пилотируемые КК имеют только первые три из них (кроме того, Япония и Европа имеют КА, посещаемые людьми на орбите, в виде модулей и грузовиков МКС). Также только первые три из них имеют технологии перехвата ИСЗ на орбите (хотя Япония и Европа близки к ней ввиду проведения стыковок).

  • искусственные спутники Земли - общее название всех аппаратов, находящихся на геоцентрической орбите , то есть вращающихся вокруг Земли
  • автоматические межпланетные станции (космические зонды) - аппараты, осуществляющие перелёт между Землёй и другими космическими телами Солнечной системы ; при этом они могут как выходить на орбиту вокруг изучаемого тела, так и исследовать их с пролётных траекторий, некоторые аппараты после этого направляются за пределы Солнечной системы
  • космические корабли , автоматические или пилотируемые, - используются для доставки грузов и человека на орбиту Земли; существуют планы полётов на орбиты других планет
  • орбитальные станции - аппараты, предназначенные для долговременного пребывания и работы людей на орбите Земли
  • спускаемые аппараты - используются для спуска полезной нагрузки с орбиты искусственного спутника или с межпланетной траектории и мягкой посадки на поверхность Земли либо другого небесного тела. Полезной нагрузкой являются люди, стационарные исследовательские станции, планетоходы и т. д.
  • планетоходы - автоматические лабораторные комплексы или транспортные средства , для перемещения по поверхности планеты и другого небесного тела

По наличию функции возвращения:

  • Возвращаемые - предусматривают возвращения людей и материалов на Землю, осуществляя мягкую либо жёсткую посадку
  • Невозвращаемые - при выработке ресурса обычно сходят с орбиты и сгорают в атмосфере, либо переводятся на орбиту захоронения .

По выполняемым функциям выделяют следующие классы :

  • спутники связи , телевещания, телекоммуникационные спутники
  • научно-исследовательские
    • геофизические
  • разведывательные и военные спутники
  • другие

Многие космические аппараты выполняют сразу несколько функций.

Система обеспечения температурного режима

Космический аппарат непрерывно получает тепло от внутренних источников (приборы, агрегаты и т. д.) и от внешних: прямого солнечного излучения, отражённого от планеты излучения, собственного излучения планеты, трения об остатки атмосферы планеты на высоте аппарата. Также аппарат теряет тепло в виде излучения. Многие узлы космических аппаратов требовательны к температурному режиму, не терпят перегрева или переохлаждения. Поддержанием баланса между получаемой тепловой энергией и её отдачей, перераспределением тепловой энергией между конструкциями аппарата и таким образом обеспечением заданной температуры занимается система обеспечения теплового режима.

Система управления

Основная статья: Система управления космического аппарата

Осуществляет управление двигательной установкой аппарата с целью обеспечения ориентации аппарата, выполнения манёвров. Обычно имеет связи с целевой аппаратурой, другими служебными подсистемами с целью контроля и управления их состоянием. Как правило, способна обмениваться посредством бортового радиокомплекса с наземными службами управления.

Система связи

Для обеспечения контроля состояния космического аппарата, управления, передачи информации с целевой аппаратуры требуется канал связи с наземным комплексом управления. В основном для этого используется радиосвязь . При большом удалении КА от Земли требуются остронаправленные антенны и системы их наведения.

Система жизнеобеспечения

Необходима для пилотируемых КА, а также для аппаратов, на борту которых осуществляются биологические эксперименты. Включает запасы необходимых веществ, а также системы регенерации и утилизации.

Система ориентации

Включает устройства определения текущей ориентации КА (солнечный датчик, звёздные датчики и т. п.) и исполнительные органы (двигатели ориентации и силовые гироскопы).

Двигательная установка

Позволяет менять скорость и направление движения КА. Обычно используется химический ракетный двигатель , но это могут быть и электрические , ядерные и другие двигатели; может применяться также

Неизведанные глубины Космоса интересовали человечество на протяжении многих веков. Исследователи и ученые всегда делали шаги к познанию созвездий и космического простора. Это были первые, но значительные достижения на то время, которые послужили дальнейшему развитию исследований в этой отрасли.

Немаловажным достижением было изобретение телескопа, с помощью которого человечеству удалось заглянуть значительно дальше в космические просторы и познакомиться с космическими объектами, которые окружают нашу планету более близко. В наше время исследования космического пространства осуществляются значительно легче, чем в те года. Наш портал сайт предлагает Вам массу интересных и увлекательных фактов о Космосе и его загадках.

Первые космические аппараты и техника

Активное исследование космического пространства началось с запуска первого искусственно созданного спутника нашей планеты. Это событие датируется 1957 годом, когда он и был запущен на орбиту Земли. Что касается первого аппарата, который появился на орбите, то он был предельно простым в своей конструкции. Этот аппарат был оснащен достаточно простым радиопередатчиком. При его создании конструкторы решили обойтись самым минимальным техническим набором. Все же первый простейший спутник послужил стартом к развитию новой эры космической техники и аппаратуры. На сегодняшний день можно сказать, что это устройство стало огромным достижением для человечества и развития многих научных отраслей исследований. Кроме того, вывод спутника на орбиту был достижением для всего мира, а не только для СССР. Это стало возможным за счет упорной работы конструкторов над созданием баллистических ракет межконтинентального действия.

Именно высокие достижения в ракетостроении дали возможность осознать конструкторам, что при снижении полезного груза ракетоносителя можно достичь очень высоких скоростей полета, которые будут превышать космическую скорость в ~7,9 км/с. Все это и дало возможность вывести первый спутник на орбиту Земли. Космические аппараты и техника являются интересными из-за того, что предлагалось много различных конструкций и концепций.

В широком понятии космическим аппаратом называют устройство, которое осуществляет транспортировку оборудования или людей к границе, где заканчивается верхняя часть земной атмосферы. Но это выход лишь в ближний Космос. При решении различных космических задач космические аппараты разделены на такие категории:

Суборбитальные;

Орбитальные или околоземные, которые передвигаются по геоцентрическим орбитам;

Межпланетные;

Напланетные.

Созданием первой ракеты для вывода спутника в Космос занимались конструкторы СССР, причем само ее создание заняло меньше времени, чем доводка и отладка всех систем. Также временной фактор повлиял на примитивную комплектацию спутника, поскольку именно СССР стремился достичь показателя первой космической скорости ее творения. Тем более что сам факт вывода ракеты за пределы планеты был более веским достижением на то время, чем количество и качество установленной аппаратуры на спутник. Вся проделанная работа увенчалась триумфом для всего человечества.

Как известно, покорение космического пространства только было начато, именно поэтому конструкторы достигали все большего в ракетостроении, что и позволило создать более совершенные космические аппараты и технику, которые помогли сделать огромный скачок в исследовании Космоса. Также дальнейшее развитие и модернизация ракет и их компонентов позволили достичь второй космической скорости и увеличить массу полезного груза на борту. За счет всего этого стал возможным первый вывод ракеты с человеком на борту в 1961 году.

Портал сайт может поведать много интересного о развитии космических аппаратов и техники за все года и во всех странах мира. Мало кому известно, что действительно космические исследования учеными были начаты еще до 1957 года. В космическое пространство первая научная аппаратура для изучения была отправлена еще в конце 40-х годов. Первые отечественные ракеты смогли поднять научную аппаратуру на высоту в 100 километров. Кроме того, это был не единичный запуск, они проводились достаточно часто, при этом максимальная высота их подъема доходила до показателя в 500 километров, а это значит, что первые представления о космическом пространстве уже были до начала космической эры. В наше время при использовании самых последних технологий те достижения могут показаться примитивными, но именно они позволили достичь того, что мы имеем на данный момент.

Созданные космические аппараты и техника требовали решения огромного количества различных задач. Самыми важными проблемами были:

  1. Выбор правильной траектории полета космического аппарата и дальнейший анализ его движения. Для осуществления данной проблемы пришлось более активно развивать небесную механику, которая становилась прикладной наукой.
  2. Космический вакуум и невесомость поставили перед учеными свои задачи. И это не только создание надежного герметичного корпуса, который мог бы выдерживать достаточно жесткие космические условия, а и разработка аппаратуры, которая могла бы выполнять свои задачи в Космосе так же эффективно, как и на Земле. Поскольку не все механизмы могли отлично работать в невесомости и вакууме так же, как и в земных условиях. Основной проблемой было исключение тепловой конвекции в герметизированных объемах, все это нарушало нормальное протекание многих процессов.

  1. Работу оборудования нарушало также тепловое излучение от Солнца. Для устранения этого влияния пришлось продумывать новые методы расчета для устройств. Также была продумана масса устройств для поддержания нормальных температурных условий внутри самого космического аппарата.
  2. Большой проблемой стало электроснабжение космических устройств. Самым оптимальным решением конструкторов стало преобразование солнечного радиационного излучения в электроэнергию.
  3. Достаточно долго пришлось решать проблему радиосвязи и управления космическими аппаратами, поскольку наземные радиолокационные устройства могли работать только на расстоянии до 20 тысяч километров, а этого недостаточно для космических пространств. Эволюция сверхдальней радиосвязи в наше время позволяет поддерживать связь с зондами и другими аппаратами на расстоянии в миллионы километров.
  4. Все же наибольшей проблемой осталась доводка аппаратуры, которой были укомплектованы космические устройства. Прежде всего, техника должна быть надежной, поскольку ремонт в Космосе, как правило, был невозможен. Также были продуманы новые пути дублирования и записи информации.

Возникшие проблемы пробудили интерес исследователей и ученых разных областей знаний. Совместное сотрудничество позволило получить положительные результаты при решении поставленных задач. В силу всего этого начала зарождаться новая область знаний, а именно космическая техника. Возникновение данного рода конструирования было отделено от авиации и других отраслей за счет его уникальности, особых знаний и навыков работы.

Непосредственно после создания и удачного запуска первого искусственного спутника Земли развитие космической техники проходило в трех основных направлениях, а именно:

  1. Проектирование и изготовление спутников Земли для выполнения различных задач. Кроме того, данная отрасль занимается модернизацией и усовершенствованием этих устройств, за счет чего появляется возможность применять их более широко.
  2. Создание аппаратов для исследования межпланетного пространства и поверхностей других планет. Как правило, данные устройства осуществляют запрограммированные задачи, также ими можно управлять дистанционно.
  3. Космическая техника прорабатывает различные модели создания космических станций, на которых можно проводить исследовательскую деятельность учеными. Эта отрасль также занимается проектированием и изготовлением пилотируемых кораблей для космического пространства.

Множество областей работы космической техники и достижения второй космической скорости позволили ученым получить доступ к более дальним космическим объектам. Именно поэтому в конце 50-х годов удалось осуществить пуск спутника в сторону Луны, кроме того, техника того времени уже позволяла отправлять исследовательские спутники к ближайшим планетам возле Земли. Так, первые аппараты, которые были посланы на изучение Луны, позволили человечеству впервые узнать о параметрах космического пространства и увидеть обратную сторону Луны. Все же космическая техника начала космической эры была еще несовершенная и неуправляемая, и после отделения от ракетоносителя главная часть вращалась достаточно хаотически вокруг центра своей массы. Неуправляемое вращение не позволяло ученым производить много исследований, что, в свою очередь, стимулировало конструкторов к созданию более совершенных космических аппаратов и техники.

Именно разработка управляемых аппаратов позволила ученым провести еще больше исследований и узнать больше о космическом пространстве и его свойствах. Также контролируемый и стабильный полет спутников и других автоматических устройств, запущенных в Космос, позволяет более точно и качественно передавать информацию на Землю за счет ориентации антенн. За счет контролируемого управления можно осуществлять необходимые маневры.

В начале 60-х годов активно проводились пуски спутников к самым близким планетам. Эти запуски позволили более подробно ознакомиться с условиями на соседних планетах. Но все же самым большим успехом этого времени для всего человечества нашей планеты является полет Ю.А. Гагарина. После достижений СССР в строении космической аппаратуры большинство стран мира также обратили особое внимание на ракетостроение и создание собственной космической техники. Все же СССР являлся лидером в данной отрасли, поскольку ему первому удалось создать аппарат, который осуществил мягкое прилунение. После первых успешных посадок на Луне и других планетах была поставлена задача для более детального исследования поверхностей космических тел с помощью автоматических устройств для изучения поверхностей и передачи на Землю фото и видео.

Первые космические аппараты, как говорилось выше, были неуправляемыми и не могли вернуться на Землю. При создании управляемых устройств конструкторы столкнулись с проблемой безопасного приземления устройств и экипажа. Поскольку очень быстрое вхождение устройства в атмосферу Земли могло просто сжечь его от высокой температуры при трении. Кроме того, при возвращении устройства должны были безопасно приземляться и приводняться в самых различных условиях.

Дальнейшее развитие космической техники позволило изготовлять орбитальные станции, которые можно использовать на протяжении многих лет, при этом менять состав исследователей на борту. Первым орбитальным аппаратом данного типа стала советская станция «Салют». Ее создание стало очередным огромным скачком человечества в познании космических пространств и явлений.

Выше указана очень маленькая часть всех событий и достижений при создании и использовании космических аппаратов и техники, которая была создана в мире для изучения Космоса. Но все же самым знаменательным стал 1957 год, с которого и началась эпоха активного ракетостроения и изучения Космоса. Именно запуск первого зонда породил взрывоподобное развитие космической техники во всем мире. А это стало возможным за счет создания в СССР ракетоносителя нового поколения, который и смог поднять зонд на высоту орбиты Земли.

Чтобы узнать обо всем этом и многом другом, наш портал сайт предлагает Вашему вниманию массу увлекательных статей, видеозаписей и фотографий космической техники и объектов.

Космические аппараты во всем своем многообразии - одновременно гордость и забота человечества. Их созданию предшествовала многовековая история развития науки и техники. Космическая эра, позволившая людям со стороны взглянуть на мир, в котором они живут, вознесла нас на новую ступень развития. Ракета в космосе сегодня - это не мечта, а предмет забот высококлассных специалистов, перед которыми стоят задачи по усовершенствованию существующих технологий. О том, какие виды космических аппаратов выделяют и чем они друг от друга отличаются, пойдет речь в статье.

Определение

Космические аппараты - обобщенное название для любых устройств, предназначенных для работы в условиях космоса. Есть несколько вариантов их классификации. В самом простом случае выделяют космические аппараты пилотируемые и автоматические. Первые, в свою очередь, подразделяются на космические корабли и станции. Различные по своим возможностям и назначению, они сходны во многом по строению и используемому оборудованию.

Особенности полета

Любой космический аппарат после старта проходит через три основных стадии: выведение на орбиту, собственно полет и посадка. Первый этап предполагает развитие аппаратом скорости, необходимой для выхода в космическое пространство. Для того чтобы попасть на орбиту, ее значение должно быть 7,9 км/с. Полное преодоление земного притяжения предполагает развитие второй равной 11,2 км/с. Именно так движется ракета в космосе, когда ее целью являются удаленные участки пространства Вселенной.

После освобождения от притяжения следует второй этап. В процессе орбитального полета движение космических аппаратов происходит по инерции, за счет приданного им ускорения. Наконец, стадия посадки предполагает снижение скорости корабля, спутника или станции практически до нуля.

«Начинка»

Каждый космический аппарат оснащается оборудованием под стать тем задачам, которые он призван решить. Однако основное расхождение связано с так называемым целевым оборудованием, необходимым как раз для получения данных и различных научных исследований. В остальном оснащение у космических аппаратов схоже. В него входят следующие системы:

  • энергообеспечение - чаще всего снабжают космические аппараты необходимой энергией солнечные или радиоизотопные батареи, химические аккумуляторы, ядерные реакторы;
  • связь - осуществляется при использовании радиоволнового сигнала, при существенном удалении от Земли особенно важным становится точное наведение антенны;
  • жизнеобеспечение - система характерна для пилотируемых космических аппаратов, благодаря ей становится возможным пребывание людей на борту;
  • ориентация - как и любые другие корабли, космические оснащены оборудованием для постоянного определения собственного положения в пространстве;
  • движение - двигатели космических аппаратов позволяют вносить изменения в скорость полета, а также в его направление.

Классификация

Один из основных критериев для разделения космических аппаратов на типы - это режим работы, определяющий их возможности. По данному признаку выделяют аппараты:

  • размещающиеся на геоцентрической орбите, или искусственные спутники Земли;
  • те, целью которых является изучение удаленных участков космоса, - автоматические межпланетные станции;
  • используемые для доставки людей или необходимого груза на орбиту нашей планеты, называются они космическими кораблями, могут быть автоматическими или же пилотируемыми;
  • созданные для пребывания людей в космосе на протяжении длительного периода, - это ;
  • занимающиеся доставкой людей и грузов с орбиты на поверхность планеты, они называются спускаемыми;
  • способные исследовать планету, непосредственно располагаясь на ее поверхности, и передвигаться по ней, - это планетоходы.

Остановимся подробнее на некоторых типах.

ИСЗ (искусственные спутники Земли)

Первыми аппаратами, запущенными в космос, были искусственные спутники Земли. Физика и ее законы делают выведение любого подобного устройства на орбиту непростой задачей. Любой аппарат должен преодолеть притяжение планеты и затем не упасть на нее. Для этого спутнику необходимо двигаться с или чуть быстрее. Над нашей планетой выделяют условную нижнюю границу возможного расположения ИСЗ (проходит на высоте 300 км). Более близкое размещение приведет к достаточно быстрому торможению аппарата в условиях атмосферы.

Первоначально только ракеты-носители могли доставлять на орбиту искусственные спутники Земли. Физика, однако, не стоит на месте, и сегодня разрабатываются новые способы. Так, один из часто используемых в последнее время методов - запуск с борта другого спутника. В планах применение и других вариантов.

Орбиты космических аппаратов, вращающихся вокруг Земли, могут пролегать на разной высоте. Естественно, от этого зависит и время, требуемое на один круг. Спутники, период обращения которых равен суткам, размещаются на так называемой Она считается наиболее ценной, поскольку аппараты, находящиеся на ней, для земного наблюдателя кажутся неподвижными, а значит, отсутствует необходимость создания механизмов поворота антенн.

АМС (автоматические межпланетные станции)

Огромное число сведений о различных объектах Солнечной системы ученые получают при помощи космических аппаратов, направляемых за пределы геоцентрической орбиты. Объекты АМС - это и планеты, и астероиды, и кометы, и даже галактики, доступные для наблюдения. Задачи, которые ставятся перед такими аппаратами, требуют огромных знаний и сил от инженеров и исследователей. Миссии АМС представляют собой воплощение технического прогресса и являются одновременно его стимулом.

Пилотируемый космический корабль

Аппараты, созданные для доставки людей к назначенной цели и возвращения их обратно, в технологическом плане ничуть не уступают описанным видам. Именно к этому типу относится «Восток-1», на котором совершил свой полет Юрий Гагарин.

Самая сложная задача для создателей пилотируемого космического корабля - обеспечение безопасности экипажа во время возвращения на Землю. Также значимой частью таких аппаратов является система аварийного спасения, в которой может возникнуть необходимость во время выведения корабля в космос при помощи ракеты-носителя.

Космические аппараты, как и вся космонавтика, непрестанно совершенствуются. В последнее время в СМИ можно было часто видеть сообщения о деятельности зонда «Розетта» и спускаемого аппарата «Филы». Они воплощают все последние достижения в области космического кораблестроения, расчета движения аппарата и так далее. Посадка зонда «Филы» на комету считается событием, сравнимым с полетом Гагарина. Самое интересное, что это не венец возможностей человечества. Нас еще ожидают новые открытия и достижения в плане как освоения космического пространства, так и строения

Похожие статьи

© 2024 rsrub.ru. О современных технологиях кровли. Строительный портал.