Что такое органогенез в биологии. Оогенез совершается в три этапа, называемых периодами

На 3-й неделе развития в ворсинчатом хорионе, точнее, в месте образования плаценты образуются третичные ворсины. В каждую ворсину врастает капилляр, и с этого времени гистотрофный тип питания зародыша заменяется на гематотрофный (более сложный и эффективный).

В построение плаценты вовлекаются не только зародышевые, но и материнские ткани. Ворсины хориона непосредственно соприкасаются с материнской кровью. Благодаря этому зародыш (эмбрион, плод) в течение всего внутриутробного развития получает от матери нужные ему питательные вещества, кислород, выделяет продукты метаболизма, углекислый газ.

С 3-й недели развития плацента осуществляет функции:

Питания;

Дыхания;

Выделения;

Синтеза гормонов, необходимых для развития плода;

Иммуносупрессии (подавление клеточного иммунитета);

Регуляции гемостаза в межворсинчатом пространстве и системе кровообращения плода, обеспечивая низкорезистентный кровоток.

В ранней плаценте отсутствует защитная функция, поэтому физические, химические, лекарственные, лучевые воздействия легко повреждают процесс дифференцировки и специализации клеток, что может прекратить жизнедеятельность эмбриона и развитие плаценты или вызвать грубые пороки развития.

На поверхности двухслойного зародышевого диска появляется первичная полоска, которая определяет ось симметрии, расположение головного и хвостового концов эмбриона, его дорсальную и вентральную поверхности. Определение полярности закладки органов предшествует процессу эмбриогенеза и обеспечивается рядом органов.

На 3-й неделе развития на поверхности эмбрионального диска по обе стороны от средней линии возникают две важнейшие структуры: нервная пластинка и сомиты.

Внутри двухслойного эмбриона развивается третий (мезодермальный) слой.

В течение всей 3-й недели развития появляется первичный желточный мешок - внезародышевый орган, который обеспечивает питание и дыхание между матерью и зародышем до тех пор, пока ворсины хориона не начнут васкуляризироваться.

К концу 6-й недели жизни эмбриона желточный мешок подвергается обратному развитию. Одновременно с желточным мешком развивается другой внезародышевый орган - амнион. Через какое-то время сформируется крупная амниотическая полость, в которую будет погружен эмбрион.

С началом 3-й недели беременности начинается дифференцировка клеток в специализированные органы и ткани - закладка всех органов. Первыми закладываются нервная трубка, сердце и половые гонады. На 21-й день беременности с помощью УЗИ можно фиксировать сердцебиение и с частотой 110-130 уд/мин. Образование нервной трубки (выделение ее головного отдела), сердца и первых сосудов являются сигналом для одновременной закладки печени, трахеи, легких, первичной кишки, поджелудочной железы, первичной почки.

Начало эмбрионального периода (3-я неделя развития) совпадает с началом первой волны инвазии интерстициального цитотрофобласта и образованием нового круга кровообращения - маточно-плацентарно-плодного.

Период органогенеза, для которого характерны высокие темпы пролиферации, митотического деления, дифференцировки клеток, синтеза белков, факторов роста, требует оптимального кровотока, хорошего кровоснабжения, низкого сосудистого сопротивления, что способствует улучшению текучести реологических свойств крови.

На этапе гисто- и органогенеза включаются гены-регуляторы дифференцировки и роста органов, пространственного морфогенеза, поскольку в этот период происходят направленные процессы индукции, миграции (перемещения) пластов клеток, специализация одних, запрограммированная гибель других клеток. Исчезает часть клеток, капилляров, которые оказались невостребованными; ликвидируется хвост эмбриона. Жабры трансформируются в челюстные придатки; развитие половых органов по мужскому типу редуцирует мюллеровы протоки.

Процесс эмбриогенеза строго последовательный, сложный, интегративный. Поэтому прекращение развития беременности объясняют общим термином - «эмбриоплацентарная недостаточность», которая зависит от множества факторов, но главным остается генетический план развития человека.

Органогенез - это самый опасный период развития.

Его спокойное естественное течение без воздействия повреждающих факторов обеспечивается синхронностью развития плаценты и плода.

Нарушение интегрированной системы мать - плацента - органы плода может провести к тяжелым порокам развития, несовместимым или (что хуже!) совместимым с жизнью плода. Ребенок может родиться с тяжелыми внешними и внутренними пороками развития и умереть либо сразу, либо через длительное время.

Развитие гонад у эмбриона мужского пола начинается рано - с 3-й недели, одновременно с сердцем и нервной трубкой.

Первый этап образования гонады - это миграция недифференцированных зародышевых клеток из желточного мешка к половым валикам. Там они превращаются в гонадобласты, а целомический эпителий, покрывающий половые валики, трансформируется в герминативный эпителий. Гонадобласты, погружаясь в первичный герминативный эпителий, формируются в половые тяжи.

Гистологически гонады уже четко различимы, но пока представляют бипотентные клетки, способные стать яичком или яичником. Их структурная организация целиком определяется сигналами из области SRY , которая находится на Y -хромосоме. В этой области Y -хромосомы индуцируется ген, который называется «фактор детерминации мужского пола» (ФДМП). В его присутствии образуются сустентоциты (клетки Сертоли), секретирующие антимюллеровый фактор, который подавляет развитие мюллеровых протоков. Яички плода сразу продуцируют мужской половой гормон - тестостерон (второй этап развития половых органов плода).

Дальнейшая дифференцировка половых органов зависит от тестостерона. Если гормон яичка отсутствует, фенотип будет развиваться исключительно по женскому типу.


На 4-й неделе эмбриональный диск «сворачивается» в цилиндр, внутри которого в продольном направлении формируется кишечная трубка.

В среднем сегменте кишечной трубки образуется соединение со вторичным желточным мешком.

С этого этапа и начинается органогенез.

Первым органом плода является сердце. Его сокращения можно наблюдать с помощью УЗИ с 22-го дня с момента оплодотворения.

На 4-й неделе происходит нейруляция - образование нервной системы, и к концу этой недели у эмбриона имеются сегменты головного и спинного мозга.

Головной мозг разделен на мозговые пузыри (передний, средний и задний). Одновременно формируется дыхательная система (2 зачатка легких), дифференцируется первичная почка (mes - onephros ) и мезонефральный (вольфов) проток.

Кроме сердца, нервной трубки, половых гонад, в 4 нед гестации у эмбриона четко видны зачатки верхних и нижних конечностей, выбухание области пульсирующего сердца. Имеется 5 пар жаберных дуг. Конечно, жабры человеческому зародышу не нужны, но этот факт относят к биологическому закону развития: «Онтогенез повторяет основные этапы филогенеза». Повторение, конечно, не полное. Отверстия жаберных щелей вскоре зарастают. Из первой пары жаберных карманов развивается среднее ухо, из остальных - щитовидная и паращитовидные железы. Образуются глаза (век еще нет, и глаза широко открыты), нос, носовые ходы.

Эмбрион растет и развивается быстро. С 4 нед появляются первые сгибательные движения в латеральных направлениях. Движения совпадают с увеличением головного конца нервной трубки. В этот срок развития будущий головной мозг занимает почти половину нервной трубки. Прослеживается начало формирования спинномозговых нервов и узлов. В двухкамерном сердце возникает межжелудочковая перегородка и утолщения, из которых формируются предсердно-желудочковые (атриовентрикулярные) клапаны.

В 4 нед в головном мозге возникают зачатки аденогипофиза, а затем гипоталамуса.


Пятая неделя развития - наиболее интенсивно формируется головной отдел мозга плода. Образуются нервные волокна, идущие от органов к головному мозгу. Изолируются друг от друга прямая кишка и мочевой пузырь, трахея и пищевод. Дифференцируется мочеполовой синус. Растет в длину позвоночник, образуя первый изгиб. Усложняется строение поджелудочной железы. Интенсивно растут верхние и нижние конечности, причем верхние - значительно быстрее. Дифференцированно обособляются половые валики, наблюдается миграция половых клеток к зачаткам гонад.

Усложняется строение сосудов плаценты. В 5-6 нед развития отмечается пик первой волны инвазии цитотрофобласта в стенки спиральных артерий эндомиометриальных сегментов, благодаря которой разрушаются эластомышечные компоненты. Эндотелий сосудов, плаценты и субплацентарной зоны выстилается фибриноидом. Процесс этот весьма сложный, регулируется децидуальными клетками эндометрия, в которых одновременно продуцируются белки-регуляторы (РАРР-А), усиливающие процессы инвазии цитотрофобласта, и ТФР, ограничивающий пролиферацию и инвазию цитотрофобласта. Регулирующую роль двух противоположных процессов осуществляет фибронектин, ламинин и коллаген 4-го типа, которые синтезируются внеклеточным (экстрацеллюлярным) матриксом.

В результате первой волны инвазии цитотрофобласта возрастает кровоток и усиливается кровоснабжение эмбриона. Доказано, что процесс инвазии как бы дублируется со стороны внутреннего цитотрофобласта, который проникает через эндотелий в глубь мышечной стенки (внутрисосудистая инвазия) и со стороны якорных ворсин, которые не только плотно фиксируют ворсинчатое дерево плаценты, но и являются стволовыми клетками для образования интерстициального цитотрофобласта.

В первые 5-12 нед и всего II триместра развития инвазия интерстициального и внутреннего цитотрофобласта приспосабливает сосудистую систему матки (в области плацентарного ложа) к оптимальному кровотоку в плаценте и кровоснабжению быстро развивающегося плода.


Шестая неделя развития - продолжается быстрое структурное обособление головного и спинного мозга, усложняется строение нейронов, дифференцируется мозжечок. Развитие мозга сопровождается активизацией ДАП. Эмбрион на этом этапе роста сгибает и выпрямляет голову, совершает движения в сторону. Размеры головы преобладают над туловищем. Вырисовывается лицо человека. Верхние и нижние конечности приобретают явные различия. Сформированы локтевые и запястные зоны, четко различаются пальцы на ногах и руках. Глаза по-прежнему широко открыты, в клетках сетчатки появился пигмент. Сформированы ушные раковины, образовалась вилочковая железа. Сразу после ее образования она заселяется плодными лимфоцитами плода.

Если в хромосомном наборе нет Y -хромосомы, то гонада развивается в яичник. Первичные половые клетки из желточного мешка перемещаются в кору гонады (мозговое вещество гонады дегенерирует). В отличие от мужских половых клеток женские подвергаются митозу и мейозу, формируются овогонии, затем овоциты, которые к 20-й неделе развития покрываются клетками гранулезы и превращаются в примордиальные фолликулы. К 7-й неделе развития в яичнике присутствует до 7 млн. стволовых клеток, большинство из которых подвергается обратному развитию.

Половые органы эмбриона развиваются из разных протоковых систем. Мужские - из вольфовых, женские - из мюллеровых протоков.

Фактор детерминации мужского пола, находящийся на локусе SRY Y -хромосомы, подавляет образование мюллеровых протоков и стимулирует развитие вольфовых. Под влиянием фетального тестостерона из вольфовых протоков образуются придатки яичка, семявыносящие протоки и семенные пузырьки.

Синтез тестостерона эмбриональными яичками не контролируется клетками формирующегося в эти же сроки гипоталамуса и гипофиза. Его индуцирует ХГ плацентарного генеза.

При отсутствии антимюллерова фактора из мюллеровых протоков образуется матка, маточные трубы и верхняя треть влагалища. Интересно подчеркнуть, что первоначально формируются шейка метки и внутренний слой миометрия. А значительно позже - к 20 нед гестации образуются средний и наружный слои миометрия.

Формирование женской половой гонады и внутренних половых органов плода женского пола протекает на фоне высокого содержания эстрогенов материнского происхождения. И хотя считается, что для внутриутробного развития плода женского пола гормоны не являются столь необходимым, как тестостерон для образования мужских половых органов, тем не менее гормональные нарушения в сроки 6-12 нед беременности могут вызывать отклонения в формировании фетальной матки.

Известно, что применение диэтилстильбэстрола, назначаемого при угрозе выкидыша в I триместре беременности, вызвало у ряда пациенток, внутриутробно подвергшихся этому воздействию, рак шейки матки и влагалища. На развитие плодов мужского пола диэтилстильбэстрол не влияет. Последствия повреждающих факторов, в том числе гормональных нарушений, могут проявиться только через 20-30 лет.

Внутриутробному воздействию диэтилстильбэстрола подверглись лица, родившиеся в период 1940-1980 гг., чьи матери во время беременности принимали этот синтетический эстроген для предотвращения выкидыша. Впоследствии выявлено, что диэтилстильбэстрол вызывает пороки развития матки, гипоплазию шейки, нарушение формы и структуры матки.

Механизм действия синтетических эстрогенов заключается в активации эстрогензависимых генов.

Тестостерон является основным андрогеном, синтезируемым яичком плода (как и у взрослого мужчины). Начало секреции тестостерона приходится на 5-ю неделю гестации. Тестостерон оказывает прямое стимулирующее влияние на вольфовы протоки, индуцируя развитие придатка яичка, семявыносящих протоков.

Воздействуя на мочеполовой синус, тестостерон определяет формирование мужского мочеиспускательного канала, предстательной железы, а его действие на урогенитальный бугорок ведет к образованию наружных мужских половых органов. В эти сроки развития продуцируется дегидротестостерон, влияющий на формирование наружных половых органов по мужскому типу. Плод, подвергшийся воздействию дегидротестостерона в этот период, будет маскулинизироваться независимо от его генотипического или гонадного пола. Напротив, отсутствие андрогенов приведет к развитию женского фенотипа.

Дегидротестостерон образуется из тестостерона с помощью фермента 5?-редуктазы.

Под влиянием неблагоприятных факторов в ранние сроки беременности (гормональные нарушения) возможен переход гена ФДМП на X -хромосому, и тогда развивается плод мужского пола с женским кариотипом 46ХХ или плод женского пола с мужским кариотипом XY .

Ген ФДМП кодирует образование белка, который назван белком «цинковых пальцев» (ZFY ) и способен произвести реверсию пола не только у плода, но и в юношеском и даже зрелом возрасте человека. Мутация гена может вызвать дисгенезию гонад, иногда дисгенезия гонад развивается и при отсутствии мутации гена. Причины этой патологии не известны, возможны гормональные нарушения, вирусные инфекции, которые легко проникают через раннюю плаценту. Как правило, потомство у таких женщин бесплодно.

До настоящего времени неизвестны причины мутации генов и их перемещения на хромосомы, в том числе «точковые мутации». Генные мутации приводят к структурно-функциональным нарушениям в гипоталамусе, гипофизе, надпочечниках, яичниках, вызывая отклонения в половой дифференцировке мозга (которая различается у плодов мужского и женского пола), реверсию пола, изменение сексуальной ориентации. Но все это может произойти через много лет после рождения, когда ни мать, ни акушер не помнят, какие факторы могли стать причиной возникшего отклонения.

Шестая неделя развития включает пик инвазии цитотрофобласта в стенки спиральных артерий эндометриальных сегментов матки и формирование маточно-эмбрионального кровообращения.


На седьмой неделе развития сильно изменяются конечности эмбриона. Чаще всего эмбрион держит верхние конечности на груди, нижние конечности согнуты в коленных суставах, эмбрион периодически разгибает ножки или располагает их вдоль туловища.

Сосуды плацентарного ложа перестают реагировать на сосудосуживающие факторы, их просвет расширяется, ток крови возрастает, интенсивность МПК значительно увеличивается.

Клетки цитотрофобласта и гигантские многоядерные клетки периодически скапливаются в просвете спиральных артерий, предотвращая проникновение эритроцитов матери в кровоток плода. К этому времени вместо эритробластов в крови эмбриона циркулируют эритроциты. Клетки цитотрофобласта иногда движутся против тока крови, что указывает на их чрезвычайную активность.

Эмбрион (с образованием плацентарно-эмбрионального кровообращения) растет еще более интенсивно. За одну неделю (с 7-й до 8-й) эмбрион полностью утрачивает сомитон, превращаясь в плод с видоспецифическими особенностями человеческого организма. Формируется окончательная почка, надпочечники, мочеточники. Разделились пальцы на руках и ногах. Плод периодически подносит руки к лицу, его большой палец касается рта, при этом появляются сосательные движения. Глаза еще широко открыты, сильно развиты надбровные дуги. Фазы сна сменяются короткими периодами активных движений. Впервые наблюдаются изолированные движения отдельных рук.


Восьмая неделя развития - последняя неделя периода эмбриогенеза, в течение которого у эмбриона появляется все, чтобы считаться плодом.

После 8 нед эмбрион именуется плодом.

У плода появилась своя группа крови, имеется (или не имеется) резус-фактор. В зонах головного мозга происходит дифференцировка первого слоя коры большого мозга, хотя их отростки еще коротки и клетки не контактируют друг с другом. Углубляются границы переднего, заднего и среднего мозга, четко прослеживаются границы продолговатого мозга. Все мозговые структуры интенсивно снабжаются кровью.

Голова имеет округлую форму, размеры ее еще непропорционально большие. Она занимает почти половину длины тела.

Окончание эмбрионального периода характеризуется полной дифференцировкой головного и спинного мозга, центрального отдела и периферической нервной системы.

Усложняются поведенческие реакции плода. Плод закрывает лицо руками, пытается сосать большой палец руки. В случае опасности (искусственное прерывание беременности) - пытается уклониться от введенных инструментов, при этом зарегистрированы движения плода в сторону от медицинской кюретки. Плод заглатывает околоплодные воды, функционируют почки, в мочевом пузыре накапливается моча.

В 8 нед беременности заканчивается первая волна инвазии цитотрофобласта. Все стенки спиральных артерий выстланы фибриноидом. Спиральные артерии матки по сути превращаются в типичные маточно-плацентарные артерии, обеспечивающие постоянный приток артериальной крови к межворсинчатому пространству.

Каждая опорная ворсина делится на 20 новых ворсин. Их число в 8 нед в 3 раза превышает число ворсин 5-недельной плаценты.

Появляются стромальные каналы, ориентированные вдоль хода некоторых ворсин, по ним циркулируют многоядерные клетки Кащенко - Гофбауэра, обладающие функцией плацентарных макрофагов.

Рост массы плаценты в I триместре опережает рост эмбриона/плода.

В 6-8 нед беременности имеет место наиболее активный синтез ХГ, что совпадает с закладкой ядер гипоталамо-гипофизарной области и формированием половых гонад. После 10 нед беременности уровень ХГ в крови и моче снижается и остается постоянно низким до конца беременности, повышаясь на 5 % в 32-34 нед беременности. В эти же сроки возрастает проницаемость микроканалов плаценты. При многоплодной беременности содержание гормонов выше, пропорционально числу плодов.

ХГ обладает важным для беременности свойством иммуносупрессии. Эмбрион, имеющий чужеродные отцовские гены, при отсутствии снижения клеточного иммунитета должен отторгаться из организма матери как чужеродный трансплантат. Однако чаще всего этого не происходит именно благодаря подавлению активности иммунной системы. ХГ обеспечивает иммунологическую толерантность, снижая риск иммунного отторжения плода в первые 12 нед беременности.

В последующие триместры беременности иммунодепрессантами являются плацентарные белки: трофобластический? 1 -гликопротеид (ТБГ), плацентарный? 1 -микроглобулин и? 2 -микрогло-булин фертильности.

В 6 нед беременности (на пике инвазии цитотрофобласта и интенсификации маточно-эмбрионального кровообращения) синтез всех гормонов, обеспечивающих рост и развитие плода, переходит от яичника к плаценте.

Необходимо отметить, что с 6-й по 8-ю неделю беременности значительно возрастает синтез ПГЕ 2 , обладающих сосудорасширяющим, антиагрегантным и антикоагулянтным действием. Их воздействие после 8-й недели гестации столь значительно, что снижается артериальное давление на 8-12 мм рт. ст. в общей системе гемодинамики матери.

Таким образом, период беременности с 3-й по 8-ю неделю является наиболее значимым и ответственным .

Основные события:

Эмбриогенез и построение структуры ранней плаценты;

Структурная организация всех органов с включением их функциональной активности;

Формирование фенотипа в соответствии с генотипом плода.

Половая принадлежность плода определяется набором хромосом: XX - женский, XY - мужской пол. Однако гонады и половые клетки первоначально имеют одинаковую организацию. Для формирования мужской половой гонады необходима не только Y -хромосома, но и ФДМП, подавляющий образование женских половых органов. Если Y -хромосома отсутствует, формируется только женский пол.

Половые органы плода мужского пола определяются воздействием тестостерона и дегидротестостерона. Нарушение гормональных соотношений в организме матери может привести к генетическим ошибкам в развитии плода.


Органогенез - это анатомическое формирование органов. Приобретение развивающимися клетками и тканями морфологических, физиологических и биохимических специфических свойств называется гистологической дифференцировкой, а процесс развития свойств, характерных для ткани взрослого организма, принято обозначать термином гистогенез.

Параллельно с дифференцировкой (или дифференциацией) зародыша, т. е. возникновением из сравнительно однородного клеточного материала зародышевых листков все более разнородных зачатков органов и тканей, развивается и усиливается интеграция, т. е. объединение частей в одно гармонично развивающееся целое.

Вначале это взаимодействие осуществляется примитивными способами (биохимическое воздействие клеток), а позднее интегрирующую функцию берут на себя нервная система и подчиненные ей железы внутренней секреции.

Чем дальше идет развитие, тем все более, но в общем весьма медленно, изменения, происходящие в зародыше, приближают соотношение его частей к дефинитивному состоянию. Возникающие из эмбриональных зачатков ткани и органы зародыша начинают специфически функционировать с наступлением в них гистологической дифференцировки. Это происходит в неодинаковые сроки для различных органов: в общем опережают те органы, функционирование которых необходимо в данный момент для дальнейшего развития зародыша (сердечно-сосудистая система, кроветворные ткани, некоторые железы внутренней секреции и др.).

Наряду с органами, формирующимися в самом зародыше, для его развития огромную роль играют вспомогательные внезародышевые органы: 1) хорион, 2) амнион, 3) аллантоис 4) желточный мешок.

Хорион образует наружную оболочку плода и окружает его вместе с амниотическим и желточным мешками.

Амнион (amnion, греч. - чаша) - внутренняя оболочка плода, предcтавляет собой пузырь, наполненный жидкостью (амниотической), в которой развивается зародыш, отчего эту оболочку называют водной; плод находится в ней до самого рождения.

Аллантоис, или мочевой мешок, напоминающий по форме колбасу, откуда и название (allas, родит, allantos, греч. - колбаса), - у высших позвоночных и у человека играет важную роль. Он связан с функцией выделения, в нем скопляются продукты обмена - мочекислые соли (откуда он и получил свое название мочевого мешка).

Желточный мешок у всех животных, яйцеклетки которых не имеют запаса питательных материалов в виде желтка, утрачивает свое значение источника питательных ресурсов зародыша. В мезенхиме стенки желточного мешка возникают первые кровеносные сосуды, однако желточный круг кровообращения у плацентарных животных и у человека оказывается значительно редуцированным.

Появление желточного мешка у человека имеет филогенетическое значение. Как уже указывалось, характерным признаком для человека и человекообразных обезьян является весьма раннее и мощное развитие внезародышевых частей - амниона, желточного мешка, а также трофобласта. У человека в отличие от всех животных наиболее интенсивно развивается внезародышевая мезодерма, Благодаря этому еще до начала формирования самого зародыша возникают внезародышевые приспособления, создающие условия для развития эмбриона как такового.

Развитие зародыша из оплодотворенного яйца происходит у высших животных в результате многократных клеточных делений (дробления); образующиеся при этом клетки постепенно распределяются по своим местам в разных частях будущего зародыша. Первоначально эмбриональные клетки похожи друг на друга, но по мере нарастания их количества они начинают изменяться, приобретая характерные особенности и способность к выполнению тех или иных специфических функций. Этот процесс, называемый дифференцировкой, в конечном итоге приводит к формированию различных тканей. Все ткани любого животного происходят из трех исходных зародышевых листков: 1) наружного слоя, или эктодермы; 2) самого внутреннего слоя, или энтодермы; и 3) среднего слоя, или мезодермы. Так, например, мышцы и кровь – это производные мезодермы, выстилка кишечного тракта развивается из энтодермы, а эктодерма образует покровные ткани и нервную систему. различают у человека и высших животных четыре основных ткани: эпителиальную, мышечную, соединительную (включая кровь) и нервную. В одних тканях клетки имеют примерно одинаковую форму и размеры и так плотно прилегают одна к другой, что между ними не остается или почти на остается межклеточного пространства; такие ткани покрывают наружную поверхность тела и выстилают его внутренние полости. В других тканях (костной, хрящевой) клетки расположены не так плотно и окружены межклеточным веществом (матриксом), которое они продуцируют. От клеток нервной ткани (нейронов), образующих головной и спинной мозг, отходят длинные отростки, заканчивающиеся очень далеко от тела клетки, например в местах контакта с мышечными клетками. Таким образом, каждую ткань можно отличить от других по характеру расположения клеток. Некоторым тканям присуще синцитиальное строение, при котором цитоплазматические отростки одной клетки переходят в аналогичные отростки соседних клеток; такое строение наблюдается в зародышевой мезенхиме, рыхлой соединительной ткани, ретикулярной ткани, а также может возникнуть при некоторых заболеваниях. Многие органы состоят из тканей нескольких типов, которые можно распознать по характерному микроскопическому строению.

При повреждении тканей возможна некоторая утрата типичной для них структуры в качестве реакции на возникшее нарушение.

Первый тип нарушения связан с тем, что закладка, какого - либо не образуется или сильно деформируется.

Второй тип нарушения связан с последовательностью закладки органов.

Третий тип – недоразвитие органов в результате подавления его закладки. (карликовость)

Четвёртый тип- обратное явление- чрезмерное разрастание органа. (например образование полноценной почки должно предшествовать формирование мочеточников. Если по каким то причинам не произойдет формирование мочеточников, то и почки не образуются) .

Пятый тип – изменение количества частей органа (например пальцев)

Шестой тип – нередуцирующиеся эмбриональные структуры.(например недарозвитие скелетных образований задней стенки крестца приводит к тому что спинной мозг прикрыть лишь мягкими тканями).

Органогенез - это формирование органов в процессе эмбрионального развития организма. Процесс формирования органов в течение онтогенеза (см.), т. е. онтогенетический органогенез, изучает (см.), а на протяжении исторического развития вида (филогенетический органогенез) - сравнительная анатомия.

Органогенез (от греч. organon - орган, genesis - развитие, образование)- процесс развития, или формирования, органов у зародыша человека и животных.

Органогенез следует за более ранними периодами зародышевого развития (см. Зародыш) - дроблением яйца, гаструляцией и наступает после того, как обособятся основные зачатки (закладки) органов и тканей. Органогенез протекает параллельно с гистогенезом (см.), или развитием тканей. В отличие от тканей, из которых каждая имеет своим источником какой-либо один из эмбриональных зачатков, органы, как правило, возникают при участии нескольких (от двух до четырех) различных зачатков (см. Зародышевые листки), дающих начало разным тканевым компонентам органа. Например, в составе стенки кишки эпителий, выстилающий полость органа, и железы развиваются из внутреннего зародышевого листка - энтодермы (см.), соединительная ткань с сосудами и гладкая мышечная ткань - из мезенхимы (см.), мезотелий, покрывающий серозную оболочку кишки,- из висцерального листка спланхнотома, т. е. среднего зародышевого листка - мезодермы, а нервы и ганглии органа - из неврального зачатка. Кожа образуется при участии наружного зародышевого листка - эктодермы (см.), из которой развиваются эпидермис и его производные (волосы, сальные и потовые железы, ногти и др.), и дерматомов, из которых возникает мезенхима, дифференцирующаяся в соединительнотканную основу кожи (дерму). Нервы и нервные окончания в коже, как и всюду,- производные неврального зачатка. Некоторые органы формируются из одного зачатка, например кость, кровеносные сосуды, лимфатические узлы - из мезенхимы; однако и здесь в закладку врастают производные зачатка нервной системы - нервные волокна, формируются нервные окончания.

Если гистогенез заключается главным образом в размножении и специализации клеток, а также в образовании ими межклеточных веществ и других неклеточных структур, то основными процессами, лежащими в основе органогенеза, являются образование зародышевыми листками складок, впячиваний, выпячиваний, утолщений, неравномерный рост, срастание или разделение (обособление), а также взаимное прорастание различных закладок.

У человека органогенез начинается с конца 3-й недели и завершается в основных чертах к 4-му месяцу внутриутробного развития. Однако развитие ряда провизорных (временных) органов зародыша - хориона, амниона, желточного мешка - начинается уже с конца 1-й недели, а некоторые дефинитивные (окончательные) органы формируются позже других (например, лимфатические узлы- начиная с последних месяцев внутриутробного развития и до наступления полового созревания). См. также Морфогенез, Онтогенез.

Стадия нейрулы следует за стадией гаструлы. В этот момент между эктодермой и энтодермой закладывается мезодерма. Она представляет собой довольно «новую» группу клеток, которая закладывается не у всех зародышей многоклеточных животных. Закладка мезодермы - самое яркое событие стадии нейрулы.

Из эктодермы формируется нервная пластинка. Далее ее края сворачиваются, образуется нервная трубка, из которой у позвоночных развивается головной и спинной мозг. Очень легко запомнить, что нервная система образуется из эктодермы. Ведь эктодерма - это наружный листок, а нервные окончания пронизывают периферию нашего тела, они сконцентрированы в коже и обеспечивают восприятие организмом стимулов окружающей среды.

Под хордой располагается кишечная трубка , образованная из энтодермы. Кишечник находится в недрах организма, поэтому легко запомнить, что из самого внутреннего листка - энтодермы - развивается кишечная трубка.

Не у всех зародышей имеется единая ось тела, хорда , и тому есть причина. Хорда развивается из самого «современного», «позднего» слоя клеток - мезодермы. Очень важно понимать, что хорда формируется именно под нервной трубкой. Данные факт легко запомнить - нервы, как сказано выше, у нас расположены «снаружи», ближе к поверхности тела, а хорда, ось тела, расположена глубже, внутри, являясь основой, стержнем организма.

Из мезодермы также формируется вторичная полость тела - целом . Как вы помните, он представляет собой два слоя эпителия внутри тела, между которыми содержится целомическая жидкость.

Итак, каковы главные результаты нейрулы? Образуется осевой комплекс органов: нервная трубка, хорда, кишечная трубка.

Взаимодействие частей зародыша

Зародыш - единый организм. В зародыше любые клеточные и тканевые структуры, а также органы, находятся в глубоком взаимодействии. Ученые доказали, что клетки мезодермы и хорды очень сильно взаимодействуют с нервной трубкой, определяют ее развитие. Такие клетки называют зародышевыми индукторами или организаторами . Фактически нервная трубка стимулируется данными клетками. Такое явление называют эмбриональной индукцией. Каким образом осуществляется данная стимуляция? Путем выделения специальных веществ. На стадии ранней гаструлы клетки эктодермы словно бы не знают еще, каким путем им развиваться: если их пересадить с верхней части на брюхо зародыша, они лишатся влияния хорды и мезодермы и превратятся в обычные клетки эпителия живота.

Что влияет на рост и развития зародыша? Безусловно, спектр факторов внутренней и внешней среды. В определенные периоды развития зародыш особенно чувствителен к внешним факторам (содержание кислорода, температура и др.) Чувствительность нарастает в середине дробления, на стадии нейрулы, в начале гаструляции.

У женщин очень чувствительны к факторам среды ооциты 1 порядка. Они долгие годы подвергаются влияниям, так как формируются еще у эмбриона. В итоге их аномалии могут привести к нарушению развития детей. ЦНС ребенка страдает от недостатка кислорода, который вызывает употребление матерью алкоголя - спиртное может привести к умственной отсталости ребенка. Каждая выкуренная сигарета уменьшает снабжение плода кислородом на 10 процентов. Сильнейшее влияние на зародыш могут оказывать вирусы, антибиотики, гормоны, ионизирующее излучение (рентгеновское), наркотики.

Немецкий эмбриолог Ганс Шпеман в 1901 году пересадил участок, взятый из спинной губы бластопора одной амфибии, в тело другой на стадии гаструлы. В итоге в теле амфибии, которой пересадили участок, прижились пересаженные клетки и развился дополнительный эмбрион. Если бы участок остался в теле хозяина, он бы вырос в часть тела (например, кожу). Но так как он был взят очень рано и еще не был дифференцирован, он вырос в другой зародыш.

Образование органов

На стадии нейрулы закладка органов только начинается. Данный процесс разворачивается в ходе образования органов. Я бы назвал его собственно органогенезом. Эта тема очень важна для ЕГЭ по биологии, а также для экзамена в МГУ.

Какое значение имеют три зародышевых листка? Какие структуры могут быть сформированы из разных листков?

Из эктодермы образуются эпителиальная и нервная ткани и некоторые железы. Под эпителиальной тканью мы имеем в виду, прежде всего, эпидермис кожи. Сюда же традиционно относят ногти, сальные и потовые железы, волосы и эмаль зубов. Помимо нервных структур из эктодермы образуются органы чувств. Для желез, образованных из эктодермы, характерна внутренняя секреция. Лидеры списка желез: гипофиз и эпифиз (им начало дала нервная трубка). Сюда можно отнести еще одну железу, расположенную близко к поверхности тела - щитовидную.

Энтодерма обеспечивает образование эпителиальной ткани. Но не той, что выстилает кожные покровы, а той, которая находится на внутренней поверхности органов пищеварительной системы и органов дыхания, а также внутри мочевыделительной, кровеносной и половой систем. Кроме того, из нее формируются и пищеварительные железы: поджелудочная и печень. Легкие также произошли из энтодермы.

Мезодерма образует мышечную ткань. Из нее сформированы главные типы соединительной ткани, в том числе кровь, лимфа и третья часть внутренней среды организма - тканевая жидкость. Хорда как структура мезодермального происхождения впоследствии дает хрящевой либо (у определенных организмов) костный скелет. Боковые участки мезодермы являются источниками мышц и сердца. Из них образованы кровеносные сосуды, а также почки. Клетки мезодермы являются исходными для органов половой системы (семенников, яичников), а также надпочечников.

Типы постэмбрионального развития

Прямое развитие, при котором юный организм по строению преимущественно сходен со взрослой особью. Единственное отличие от нее - в размерах и отсутствии половой зрелости. Классическими примерами данного развития являются циклы представителей классов пресмыкающихся, птиц, млекопитающих. Но среди беспозвоночных также нередко встречаются данные типы развития, например, среди моллюсков, некоторых червей.

Непрямое развитие (с метаформозом) характерно для рыб, земноводных, очень часто встречается у беспозвоночных. Пример - личинка радикально отличается от взрослой особи, но в процессе развития она претерпевает ряд изменений. В этом вопросе есть один важный момент для ЕГЭ по биологии. Надо знать, что только у насекомых непрямое развитие подразделяется на полное превращение и неполное . При полном превращении личинка превращается в куколку, из которой появляется новое насекомое. У этого процесса четыре стадии: яйцо - личинка - куколка - имаго. При неполном превращении наличествуют три стадии, так как отсутствует куколка. На экзамене необходимо приводить примеры отрядов насекомых, для которых характерно каждое из данных превращений.

Значение непрямого развития

1. Отсутствие конкуренции личинок со взрослыми особями за пищевые ресурсы и территорию. Известно, что личинка лягушки (головастик) питается растениями, а сама лягушка - насекомыми. Личинки и взрослые насекомые часто обитают в разных средах, например, личинка стрекозы (или бабочки) - на листьях наземных растений, в отличие от летающей взрослой особи.

2. Личинки могут способствовать расселению вида. Например, личинка кишечнополостных планула имеет реснички и передвигается. В отличие от взрослых прикрепленных форм, например, коралловых полипов.

3.В стадии личинки легче переносить неблагоприятные условия. Личинка майского жука зарывается в почву и существует несколько лет, питаясь подземными частями растений.

4.В целом можно сделать вывод, что непрямое развитие позволяет организму наиболее полно использовать ресурсы среды, повышает выживаемость вида .

Хочешь сдать экзамен на отлично? Жми сюда -

Период размножения

Попав в яичник, гоноциты становятся оогониями. Оогонии осуществляют период размножения. В этот период оогонии делятся митотическим путем. Этот процесс происходит только в период эмбрионального развития самки.

Период роста

Половые клетки в этом периоде называются ооцитами первого порядка. Они теряют способность к митотическому делению и вступают в профазу I мейоза. В этот период осуществляется рост половых клеток.

Период созревания

Созревание ооцита - это процесс последовательного прохождения двух делений мейоза. Как уже говорилось выше, при подготовке к первому делению созревания ооцит длительное время находится на стадии профазы I мейоза, когда и происходит его рост. Выход из профазы I мейоза приурочены к достижению самкой половозрелости и определяются половыми гормонами.

2 В результате овогенеза образуется только 1 яйцеклетка, а при сперматогенезе образуются 4 готовых сперматозоида.

БИЛЕТ-44.СТРОЕНИЕ ЯЙЦЕКЛЕТКИ И СПЕРМАТОЗОИДА, ТИПЫ ЯЙЦЕКЛЕТОК У ЖИВОТНЫХ?

Наиболее очевидная отличительная черта яйцеклетки - это ее большие размеры. Типичная яйцеклетка имеет сферическую или овальную форму. Столь же внушительными могут быть размеры ядра, в преддверии быстрых делений, следующих сразу за оплодотворением, в ядре откладываются запасы белков.

Потребность клетки в питательных веществах удовлетворяет в основном желток - материал протоплазмы, богатый липидами и белками. Он обычно содержится в дискретных образованиях, называемых желточными гранулами.

Другой важной специфической структурой яйцеклетки является наружная яйцевая оболочка - покров из особого неклеточного вещества, состоящего в основном из гликопротеиновых млекул, часть которых секретирует сама яйцеклетка, а другую часть - окружающие клетки. У многих видов оболочка имеет внутренний слой, непосредственно прилегающий к плазматической мембране яйцеклетки. . Этот слой защищает яйцеклетку от механических повреждений, в некоторых яйцеклетках он действует также как видоспецифический барьер для спермиев, позволяющий проникать внутрь только спермиям того же вида или очень близких видов.

Многие яйцеклетки содержат специализированные секреторные пузырьки, находящиеся под плазматической мембраной в наружном, или кортикальном, слое цитоплазмы. При активации яйцеклетки спермием эти кортикальные гранулы высвобождают содержимое путем экзоцитоза, в результате свойства яйцевой оболочки изменяются таким образом, что через нее уже не могут проникнуть внутрь яйцеклетки другие спермии

Сперматозоиды- Головка сперматозоида имеет овальную форму, а на ее вершине расположена так называемая акросома - пузырек с ферментами, которые обеспечивают проникновение сперматозоида через защитный наружный слой яйцеклетки в ходе оплодотворения. Позади акросомы находится ядро, содержащее половинный набор мужского генетического материала (ДНК), закодированного в 23 хромосомах. Благодаря процессу мейоза каждый спермий несет уникальную генетическую информацию. Шейка - волокнистая область, где средняя часть спермия соединяется с его головкой. Эта гибкая структура позволяет головке колебаться из стороны в сторону, способствуя продвижению сперматозоида.

Строение хвоста -Хвост сперматозоида содержит 2 центральных и 9 пар периферических микротрубочек. Начальную часть хвоста охватывает плотное кольцо соединительной ткани и защитное влагалище. Хвост имеет три участка: промежуточный, наиболее толстый, продуцирующему энергию для движений сперматозоида; главный, состоящий из 20 микротрубочек, покрытых наружным слоем плотных волокон и влагалищем; концевой, где плотные волокна и влагалище истончаются; эта часть хвоста покрыт лишь тонкой клеточной мембраной.

ТИПЫ ЯЙЦЕКЛЕТОК У ЖИВОТНЫХ.

1. Алецитальная (безжелтковая). 2. Олиголецитальная (маложелтковая), в них желток равномерно распределен по цитоплазме, поэтому их называют изолецитальными. Среди них различают первично изолецитальные (у ланцетника) и вторично изолецитальные (у млекопитающих н человека), 3. Полилецитальные (многожелтковые) Желток в этих яйцеклетках может быть сосредоточен в центре - это центролецитальные клетки.Среди телолецитальных яйцеклеток в свою очередь различают умеренно телолецитальные или мезолецитальные со средним содержанием желтка(у амфибий) и резко телолецитальные, перегруженные желтком от которого свободна лишь небольшая часть анимального полюса (у птиц)

БИЛЕТ-45.СПЕРМАТОГЕНЕЗ И ОВОГЕНЕЗ, СХОДСТВА И РАЗЛИЧИЯ?

Сперматогене́з - развитие мужских половых клеток (сперматозоидов), происходящее под регулирующим воздействием гормонов. Одна из форм гаметогенеза.

Овогене́з - у животных, развитие женской половой клетки - яйцеклетки (яйца).Во время эмбрионального развития организма гоноциты вселяются в зачаток женской половой гонады (яичника), и всё дальнейшее развитие женских половых клеток происходит в ней.

1В отличие от образования спермиев сперматозоидов у мужчин, которое начинается только в период полового созревания, образование яйцеклеток у женщин начинается ещё до их рождения и завершается для каждой данной яйцеклетки только после её оплодотворения.

2 В результате овогенеза образуется только 1 яйцеклетка, а при сперматогенезе образуются 4 готовых сперматозоида.

Сходства:

1 Процесс овогенеза имеет принципиальное сходство со сперматогенезом и также проходит через ряд стадий: размножения, роста и созревания. Яйцеклетки образуются в яичнике, развиваясь из незрелых половых клеток - овогониев, содержащих диплоидное число хромосом. Овогонии, подобно сперматогониям, претерпевают последовательные митотические деления, которые завершаются к моменту рождения плода.

БИЛЕТ-46. МЕЙОЗ, ЕГО БИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ, ФАЗЫ? ВЛИЯЕТ ЛИ КРОССИНГОВЕР НА РЕЗУЛЬТАТЫ МЕЙОЗА?

Мейоз - это особый способ деления эукариотических клеток, в результате которого происходит переход клеток из диплоидного состояния в гаплоидное. Мейоз состоит из двух последовательных делений, которым предшествует однократная репликация ДНК.

Первое мейотическое деление (мейоз 1) называется редукционным, поскольку именно во время этого деления происходит уменьшение числа хромосом вдвое: из одной диплоидной клетки образуются две гаплоидные.

Интерфаза - синтез и накопление веществ и энергии, необходимых для осуществления обоих делений, увеличение размеров клетки и числа органоидов, удвоение центриолей, репликация ДНК, которая завершается в профазе 1.Профаза 1 -, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, «исчезновение» ядрышек, конденсация двухроматидных хромосом, конъюгация гомологичных хромосом и кроссинговер. Профаза1 подразделяется на стадии: лептотена(завершение репликации ДНК), зиготена(конъюгация гомологичных хромосом образование бивалентов), пахитена(Кроссинговер, перекомбинация генов), диплотена(выявление хиазм), Метаыаза1- выстраивание бивалентов в экваториальной плоскости клетки, прикрепление нитей веретена деления одним концом к центриолям, другим - к центромерам хромосом. Анафаза 1 - случайное независимое расхождение двухроматидных хромосом к противоположным полюсам клетки, перекомбинация хромосом. Телофаза 1 - образование ядерных мембран, деление цитоплазмы.

Второе мейотическое деление (мейоз 2)

Интерфаза 2 , представляет собой короткий перерыв между первым и вторым мейотическими делениями, во время которого не происходит репликация ДНК. Профаза 2 - расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления.Метафаза 2 - выстраивание двухроматидных хромосом в экваториальной плоскости клетки, прикрепление нитей веретена деления одним концом к центриолям, другим - к центромерам хромосом; 2 блок овогенеза у человека.Анафаза 2 - деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки, перекомбинация хромосом.Телофаза 2 - образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия) с образованием в итоге четырех гаплоидных клеток.

Биологическое значение мейоза. Мейоз является центральным событием гаметогенеза у животных и спорогенеза у растений. Являясь основой комбинативной изменчивости, мейоз обеспечивает генетическое разнообразие гамет.

Кроссинговер.

Во время пахитены, гомологичные хромосомы находятся в состоянии конъюгации длительный период: у дрозофилы - четверо суток, у человека больше двух недель. Все это время отдельные участки хромосом находятся в очень тесном соприкосновении. Если в таком участке произойдет разрыв цепочек ДНК одновременно в двух хроматидах, принадлежащих разным гомологам, то при восстановлении разрыва может получиться так, что ДНК одного гомолога окажется соединенной с ДНК другой, гомологичной хромосомы. Этот процесс носит -название кроссинговера.

Поскольку кроссинговер - взаимный обмен гомологичными участками хромосом между гомологичными (парными) хромосомами исходных гаплоидных наборов - особи имеют новые, различающиеся между собой генотипы. При этом достигается перекомбинация наследственных свойств родителей, что увеличивает изменчивость и дает более богатый материал для естественного отбора.

БИЛЕТ-47.ПАРТЕНОГЕНЕЗ, ЕГО ЗНАЧЕНИЕ?

Партеногенез -одна из форм полового размножения организмов, при которой женские половые клетки (яйцеклетки) развиваются во взрослый организм без оплодотворения. Хотя партеногенетическое размножение не предусматривает слияния мужских и женских гамет, партеногенез все равно считается половым размножением, так как организм развивается из половой клетки. Считается, что партеногенез возник в процессе эволюции организмов у раздельнополых форм.

В тех случаях, когда партеногенетические виды представлены (всегда или периодически) только самками, одно из главных биологических преимуществ партеногенеза заключается в ускорении темпа размножения вида, так как все особи подобных видов способны оставить потомство. Такой способ размножения используется некоторыми животными (хотя чаще к нему прибегают относительно примитивные организмы). В тех случаях, когда из оплодотворённых яйцеклеток развиваются самки, а из неоплодотворённых - самцы, партеногенез способствует регулированию численных соотношений полов (например, у пчёл). Часто партеногенетические виды и расыявляются полиплоидными и возникают в результате отдалённой гибридизации, обнаруживая в связи с этим гетерозис и высокую жизнеспособность. Партеногенез следует относить к половому размножению и следует отличать от бесполого размножения, которое осуществляется всегда при помощи соматических органов и клеток (размножениеделением, почкованием и т. п.).

БИЛЕТ-48.СТАДИИ ЭМБРИОГЕНЕЗА, ДРОБЛЕНИЕ И ЕГО ХАРАКТЕРИСТИКА У РАЗНЫХ ЖИВОТНВХ, ТИПЫ БЛАСТУЛ?

Эмбриогенез - это часть индивидуального развития, онтогенеза.

Эмбриология человека изучает процесс развития

человека, начиная с оплодотворения и до рождения. Эмбриогенез человека,

продолжающийся в среднем 280 суток (10 лунных месяцев), подразделяется на

три периода: начальный (первая неделя развития), зародышевый (вторая-

восьмая недели), и плодный (с девятой недели до рождения ребенка). В курсе

эмбриологии человека на кафедре гистологии более подробно изучаются ранние

стадии развития.

В процессе эмбриогенеза можно выделить следующие основные стадии:

1. Оплодотворение ~ слияние женской и мужской половых клеток. В результате

образуется новый одноклеточный организм-зигота.

2. Дробление. Серия быстро следующих друг за другом делений зиготы. Эта

позвоночных.

3. Гаструляция. В результате деления, дифференцировки, взаимодействия и

перемещения клеток зародыш становится многослойным. Появляются зародышевые

листки эктодерма, энтодерма и мезодерма, несущие в себе накладки различных

тканей и органов.

4. Гистогенез, органогенез, системогенез. В ходе дифференцировки

зародышевых листков образуются зачатки тканей, формирующие органы и системы

организма человека.

Дробление-это вторая стадия эмбриогенеза, которая заключается в серии быстро следующих друг за другом делений зиготы. Эта

стадия заканчивается образованием многоклеточного зародыша, имеющего у

человека форму пузырька-бластоцисты, соответствующей бластуле других

позвоночных.

Дробление может быть: детерминированным и регулятивным; полным или неполным; равномерным (бластомеры более-менее одинаковы по величине) и неравномерным (бластомеры не одинаковы по величине, выделяются две - три размерные группы, обычно называемые макро- и микромерами); наконец, по характеру симметрии различают радиальное, спиральное и т.д

Голобластическое дробление-Плоскости дробления разделяют яйцо полностью. Выделяют полное равномерное дробление, при котором бластомеры не различаются по размерам (такой тип дробления характерен для гомолецитальных и алецитальных яиц), и полное неравномерное дробление, при котором бластомеры могут существенно различаться по размерам. Такой тип дробления характерен для умеренно телолецитальных яиц.

Меробластическое дробление

    Дискоидальное

    ограничено относительно небольшим участком у анимального полюса,

    плоскости дробления не проходят через всё яйцо и не захватывают желток.

Такой тип дробления типичен для телолецитальных яиц , богатых желтком (птицы, рептилии). Такое дробление называют также дискоидальным , так как в результате дробления на анимальном полюсе образуется небольшой диск клеток (бластодиск).

    Поверхностное

    ядро зиготы делится в центральном островке цитоплазмы,

    получающиеся ядра перемещаются на поверхность яйца, образуя поверхностный слой ядер (синцитиальную бластодерму) вокруг лежащего в центре желтка. Затем ядра разделяются мембранами, и бластодерма становится клеточной.

Такой тип дробления наблюдается у членистоногих .

Похожие статьи

© 2024 rsrub.ru. О современных технологиях кровли. Строительный портал.