Элементарный протон. Протон - это элементарная частица

Протоны принимают участие в термоядерных реакциях , которые являются основным источником энергии, генерируемой звёздами . В частности, реакции pp -цикла , который является источником почти всей энергии, излучаемой Солнцем , сводятся к соединению четырёх протонов в ядро гелия-4 с превращением двух протонов в нейтроны.

В физике протон обозначается p (или p + ). Химическое обозначение протона (рассматриваемого в качестве положительного иона водорода) - H + , астрофизическое - HII.

Открытие [ | ]

Свойства протона [ | ]

Отношение масс протона и электрона, равное 1836,152 673 89(17) , с точностью до 0,002 % равно значению 6π 5 = 1836,118…

Внутренняя структура протона впервые была экспериментально исследована Р. Хофштадтером путём изучения столкновений пучка электронов высоких энергий (2 ГэВ ) с протонами (Нобелевская премия по физике 1961 г.) . Протон состоит из тяжёлой сердцевины (керна) радиусом см, с высокой плотностью массы и заряда, несущей ≈ 35 % {\displaystyle \approx 35\%} электрического заряда протона и окружающей его относительно разреженной оболочки. На расстоянии от ≈ 0 , 25 ⋅ 10 − 13 {\displaystyle \approx 0,25\cdot 10^{-13}} до ≈ 1 , 4 ⋅ 10 − 13 {\displaystyle \approx 1,4\cdot 10^{-13}} см эта оболочка состоит в основном из виртуальных ρ - и π -мезонов, несущих ≈ 50 % {\displaystyle \approx 50\%} электрического заряда протона, затем до расстояния ≈ 2 , 5 ⋅ 10 − 13 {\displaystyle \approx 2,5\cdot 10^{-13}} см простирается оболочка из виртуальных ω - и π -мезонов, несущих ~15 % электрического заряда протона .

Давление в центре протона, создаваемое кварками, составляет порядка 10 35 Па (10 30 атмосфер), то есть выше давления внутри нейтронных звёзд .

Магнитный момент протона измеряется путём измерения отношения резонансной частоты прецессии магнитного момента протона в заданном однородном магнитном поле и циклотронной частоты обращения протона по круговой орбите в том же самом поле .

С протоном связаны три физических величины, имеющих размерность длины:

Измерения радиуса протона с помощью атомов обычного водорода, проводимые разными методами с 1960-х годов, привели (CODATA -2014) к результату 0,8751 ± 0,0061 фемтометра (1 фм = 10 −15 м ) . Первые эксперименты с атомами мюонного водорода (где электрон заменён на мюон) дали для этого радиуса на 4 % меньший результат 0,84184 ± 0,00067 фм . Причины такого различия пока неясны.

Так называемый протона Q w ≈ 1 − 4 sin 2 θ W , определяющий его участие в слабых взаимодействиях путём обмена Z 0 -бозоном (аналогично тому как электрический заряд частицы определяет её участие в электромагнитных взаимодействиях путём обмена фотоном), составляет 0,0719 ± 0,0045 , согласно экспериментальным измерениям нарушения чётности при рассеянии поляризованных электронов на протонах . Измеренная величина в пределах экспериментальной погрешности согласуется с теоретическими предсказаниями Стандартной модели (0,0708 ± 0,0003 ) .

Стабильность [ | ]

Свободный протон стабилен, экспериментальные исследования не выявили никаких признаков его распада (нижнее ограничение на время жизни - 2,9⋅10 29 лет независимо от канала распада , 8,2⋅10 33 лет для распада в позитрон и нейтральный пион , 6,6⋅10 33 лет для распада в положительный мюон и нейтральный пион ). Поскольку протон является наиболее лёгким из барионов , стабильность протона является следствием закона сохранения барионного числа - протон не может распасться в какие-либо более лёгкие частицы (например, в позитрон и нейтрино) без нарушения этого закона. Однако многие теоретические расширения Стандартной модели предсказывают процессы (пока не наблюдавшиеся), следствием которых было бы несохранение барионного числа и, следовательно, распад протона.

Протон, связанный в атомном ядре, способен захватывать электрон с электронной K-, L- или M-оболочки атома (т. н. «электронный захват »). Протон атомного ядра, поглотив электрон, превращается в нейтрон и одновременно испускает нейтрино : p+e − → e . «Дырка» в K-, L- или M-слое, образовавшаяся при электронном захвате, заполняется электроном одного из вышележащих электронных слоев атома с излучением характеристических рентгеновских лучей, соответствующих атомному номеру Z − 1 , и/или Оже-электронов . Известно свыше 1000 изотопов от 7
4 до 262
105 , распадающихся путём электронного захвата. При достаточно высоких доступных энергиях распада (выше 2m e c 2 ≈ 1,022 МэВ ) открывается конкурирующий канал распада - позитронный распад p → +e + e . Следует подчеркнуть, что эти процессы возможны только для протона в некоторых ядрах, где недостающая энергия восполняется переходом образовавшегося нейтрона на более низкую ядерную оболочку; для свободного протона они запрещены законом сохранения энергии.

Источником протонов в химии являются минеральные (азотная , серная , фосфорная и другие) и органические (муравьиная , уксусная , щавелевая и другие) кислоты. В водном растворе кислоты способны к диссоциации с отщеплением протона, образующего катион гидроксония .

В газовой фазе протоны получают ионизацией - отрывом электрона от атома водорода . Потенциал ионизации невозбуждённого атома водорода составляет 13,595 эВ . При ионизации молекулярного водорода быстрыми электронами при атмосферном давлении и комнатной температуре первоначально образуется молекулярный ион водорода (H 2 +) - физическая система, состоящая из двух протонов, удерживающихся вместе на расстоянии 1,06 одним электроном. Стабильность такой системы, по Полингу , вызвана резонансом электрона между двумя протонами с «резонансной частотой», равной 7·10 14 с −1 . При повышении температуры до нескольких тысяч градусов состав продуктов ионизации водорода изменяется в пользу протонов - H + .

Применение [ | ]

Пучки ускоренных протонов используются в экспериментальной физике элементарных частиц (изучение процессов рассеяния и получение пучков других частиц), в медицине (протонная терапия онкологических заболеваний) .

См. также [ | ]

Примечания [ | ]

  1. http://physics.nist.gov/cuu/Constants/Table/allascii.txt Fundamental Physical Constants --- Complete Listing
  2. CODATA Value: proton mass
  3. CODATA Value: proton mass in u
  4. Ahmed S.; et al. (2004). “Constraints on Nucleon Decay via Invisible Modes from the Sudbury Neutrino Observatory”. Physical Review Letters . 92 (10): 102004. arXiv :hep-ex/0310030 . Bibcode :2004PhRvL..92j2004A . DOI :10.1103/PhysRevLett.92.102004 . PMID .
  5. CODATA Value: proton mass energy equivalent in MeV
  6. CODATA Value: proton-electron mass ratio
  7. , с. 67.
  8. Хофштадтер P. Структура ядер и нуклонов // УФН . - 1963. - Т. 81, № 1. - С. 185-200. - ISSN. - URL: http://ufn.ru/ru/articles/1963/9/e/
  9. Щёлкин К. И. Виртуальные процессы и строение нуклона // Физика микромира - М.: Атомиздат, 1965. - С. 75.
  10. Упругие рассеяния, периферические взаимодействия и резононы // Частицы высоких энергий. Высокие энергии в космосе и лаборатории - М.: Наука, 1965. - С. 132.

ОПРЕДЕЛЕНИЕ

Протоном называют стабильную частицу, принадлежащую классу адронов, являющуюся ядром атома водорода.

Ученые расходятся во мнении, какое и научных событий считать открытием протона. Важную роль в открытии протона сыграли:

  1. создание Э. Резерфордом планетарной модели атома;
  2. открытие изотопов Ф. Содди, Дж. Томсоном, Ф. Астоном;
  3. наблюдения за поведением ядер атомов водорода при выбивании их альфа-частицами из ядер азота Э. Резерфордом.

Первые фотографии следов протона были получены П. Блэкеттом в камере Вильсона при исследовании процессов искусственного превращения элементов. Блэкетт исследовал процесс захвата альфа частиц ядрами азота. В этом процессе испускался протон и ядро азота превращалось в изотоп кислорода.

Протоны совместно с нейтронами входят в состав ядер всех химических элементов. Количество протонов в ядре определяет атомный номер элемента в периодической системе Д.И. Менделеева.

Протон - это положительно заряженная частица. Ее заряд равен по модулю элементарному заряду, то есть величине заряда электрона. Заряд протона часто обозначают как , тогда можно записать, что:

В настоящее время считают, что протон не является элементарной частицей. Он имеет сложную структуру и состоит из двух u- кварков и одного d - кварка. Электрический заряд u - кварка () положительный и он равен

Электрический заряд d - кварка () отрицательный и равен:

Кварки связывают обмен глюонами, которые являются квантами поля, они переносят сильное взаимодействие. То, что протоны имеют в своей структуре несколько точечных центров рассеяния подтверждено экспериментами по рассеянию электронов на протонах.

Протон имеет конечные размеры, о которых ученые до сих пор спорят. В настоящее время протон представляют как облако, которое имеет размытую границу. Такая граница состоит из постоянно возникающих и аннигилирующих виртуальных частиц. Но в большинстве простых задач протон, конечно можно считать точечным зарядом. Масса покоя протона () примерно равна:

Масса протона в 1836 раз больше, чем масса электрона.

Протоны принимают участие во всех фундаментальных взаимодействиях: сильные взаимодействия объединяют протоны и нейтроны в ядра, электроны и протоны при помощи электромагнитных взаимодействий соединяются в атомах. В качестве слабого взаимодействия можно привести, например, бета-распад нейтрона (n):

где p - протон; — электрон; — антинейтрино.

Распад протона получен пока еще не был. Это является одной из важных современных задач физики, так как это открытие стало бы существенным шагом в понимании единства сил природы.

Примеры решения задач

ПРИМЕР 1

Задание Ядра атома натрия бомбардируют протонами. Какова сила электростатического отталкивания протона от ядра атома, если протон находится на расстоянии м. Считайте, что заряд ядра атома натрия в 11 раз больше, чем заряд протона. Влияние электронной оболочки атома натрия можно не читывать.
Решение За основу решения задачи примем закон Кулона, который можно для нашей задачи (считая частицы точечными) записать следующим образом:

где F - сила электростатического взаимодействия заряженных частиц; Кл — заряд протона; - заряд ядра атома натрия; - диэлектрическая проницаемость вакуума; — электрическая постоянная. Используя имеющиеся у нас данные можно провести вычисления искомой силы отталкивания:

Ответ Н

ПРИМЕР 2

Задание Рассматривая простейшую модель атома водорода, считают, что электрон движется по круговой орбите вокруг протона (ядра атома водорода). Чему равна скорость движения электрона, если радиус его орбиты равен м?
Решение Рассмотрим силы (рис.1), которые действуют на движущийся по окружности электрон. Это сила притяжения со стороны протона. По закону Кулона мы запишем, что ее величина равна ():

где =— заряд электрона; - заряд протона; — электрическая постоянная. Сила притяжения меду электроном и протоном в любой точке орбиты электрона направлена от электрона к протону по радиусу окружности.

Протон (элементарная частица)

Полевая теория элементарных частиц, действуя в рамках НАУКИ, опирается на проверенный ФИЗИКОЙ фундамент:

  • Классическую электродинамику,
  • Квантовую механику (без виртуальных частиц, противоречащих закону сохранения энергии),
  • Законы сохранения - фундаментальные законы физики.
В этом принципиальное отличие научного подхода, использованного полевой теорией элементарных частиц - подлинная теория должна строго действовать в рамках законов природы: в этом и заключается НАУКА.

Использовать не существующие в природе элементарные частицы, выдумывать не существующие в природе фундаментальные взаимодействия, или подменять существующие в природе взаимодействия сказочными, игнорировать законы природы, занимаясь математическими манипуляциями над ними (создавая видимость науки) - это удел СКАЗОК, выдаваемых за науку . В итоге физика скатывалась в мир математических сказок. Сказочные персонажи Стандартной модели (кварки с глюонами) вместе со сказочными гравитонами и сказками "Квантовой теории" уже проникли в учебники физики - и вводят в заблуждение детей, выдавая математические сказки за действительность . Сторонники честной Новой физики пытались этому противостоять, но силы были не равны. И так было до 2010 года до появления полевой теории элементарных частиц, когда борьба за возрождение ФИЗИКИ-НАУКИ перешла на уровень открытого противостояния подлинной научной теории с математическими сказками, захватившими власть в физике микромира (да и не только).

Но о достижениях Новой физики человечество бы не узнало, без интернета, поисковиков и возможности свободно говорить правду на страницах сайта. Что касается изданий, зарабатывающих на науке, то кто их сегодня читает за деньги, когда есть возможность быстро и свободно получить требуемую информацию в интернете.

    1 Протон - это элементарная частица
    2 Когда физика оставалась наукой
    3 Протон в физике
    4 Радиус протона
    5 Магнитный момент протона
    6 Электрическое поле протона

      6.1 Электрическое поле протона в дальней зоне
      6.2 Электрические заряды протона
      6.3 Электрическое поле протона в ближней зоне
    7 Масса покоя протона
    8 Время жизни протона
    9 Правда о Стандартной модели
    10 Новая физика: Протон - итог

Эрнест Резерфорд в 1919 году, облучая альфа-частицами ядра азота, наблюдал образование ядер водорода. Образующуюся в результате столкновения частицу Резерфорд назвал протоном. Первые фотографии следов протона в камере Вильсона были получены в 1925 году Патриком Блэкеттом. Но сами ионы водорода (чем и являются протоны) были известны задолго до опытов Резерфорда.
Сегодня, в 21 веке, физика может сказать о протонах значительно больше.

1 Протон это элементарная частица

Представления физики о структуре протона менялись, по мере развития физики.
Первоначально физика считала протон элементарной частицей, и так было до 1964 года, когда ГеллМанн и Цвейг независимо предложили гипотезу кварков.

Первоначально, кварковая модель адронов ограничивалась только тремя гипотетическими кварками и их античастицами. Это позволяло правильно описать спектр известных на тот момент элементарных частиц, без учета лептонов, которые не вписались в предлагаемую модель и потому признавались элементарными, наравне с кварками. Платой за это явилось введение, не существующих в природе, дробных электрических зарядов. Затем, по мере развития физики и поступления новых экспериментальных данных, кварковая модель постепенно разрасталась, трансформировалась, в итоге превратившись в Стандартную модель.

Физики усердно занялись поисками новых гипотетических частиц. Поиски кварков велись в космических лучах, в природе (поскольку их дробный электрический заряд невозможно скомпенсировать) и на ускорителях.
Шли десятилетия, росла мощность ускорителей, а результат поисков гипотетических кварков был всегда один: кварки НЕ найдены в природе .

Видя перспективу гибели кварковой (а затем Стандартной) модели, ее сторонники сочинили и подсунули человечеству сказочку о том, что в некоторых экспериментах наблюдаются следы кварков. - Проверить эту информацию невозможно - экспериментальные данные обрабатываются с помощью Стандартной модели, а она всегда выдаст нечто за то, что ей нужно. История физики знает примеры, когда вместо одной частицы подсовывали другую - последней такой манипуляцией экспериментальными данными явилось подсовывание векторного мезона в качестве сказочного бозона Хиггса, якобы отвечающего за массу частиц, но при этом не создающую их гравитационное поле. За эту математическую сказку даже дали Нобелевскую премию по физике. В нашем случае в качестве сказочных кварков подсунули стоячие волны переменного электромагнитного поля, о котором писали волновые теории элементарных частиц.

Когда трон под стандартной моделью вновь зашатался, ее сторонники сочинили и подсунули человечеству новую сказочку для самых маленьких, под названием "Конфайнмент" . Любой мыслящий человек сразу увидит в ней издевательство над законом сохранения энергии - фундаментальным законом природы. Но сторонники Стандартной модели не желают видеть ДЕЙСТВИТЕЛЬНОСТЬ.

2 Когда физика оставалась наукой

Когда физика еще оставалась наукой в ней истина определялась не мнением большинства - а экспериментом. В этом принципиальное отличие ФИЗИКИ-НАУКИ от математических сказок, выдаваемых за физику.
Все эксперименты по поиску гипотетических кварков (кроме, конечно, подсовывания своих верований, под видом экспериментальных данных) однозначно показали: кварков в природе НЕТ .

Теперь сторонники Стандартной модели пытаются подменить результат всех экспериментов, ставший приговором для Стандартной модели, своим коллективным мнением, выдавая его за действительность. Но сколько сказочке не виться, а конец все равно будет. Вопрос только, какой это будет конец: сторонники Стандартной модели проявят разум, мужество и изменят свои позиции вслед за единогласным вердиктом экспериментов (а точнее: вердиктом ПРИРОДЫ), или их отправит в историю под всеобщий смех Новая физика - физика 21 века , как сказочников, попытавшихся надуть все человечество. Выбор за ними.

Теперь о самом протоне.

3 Протон в физике

Протон - элементарная частица квантовое число L=3/2 (спин = 1/2) - группа барионов, подгруппа протона, электрический заряд +e (систематизация по полевой теории элементарных частиц).
Согласно полевой теории элементарных частиц (теории - построенной на научном фундаменте и единственной получившей правильный спектр всех элементарных частиц), протон состоит из вращающегося поляризованного переменного электромагнитного поля с постоянной составляющей. Все голословные утверждения Стандартной модели о том, что протон якобы состоит из кварков, не имеют ничего общего с действительностью . - Физика экспериментально доказала, что протон обладает электромагнитными полями, и еще гравитационным полем. О том, что элементарные частицы не просто обладают - а состоят из электромагнитных полей, физика гениально догадалась еще 100 лет назад, но вот построить теорию никак не удавалось до 2010 года. Теперь в 2015 году появилась еще и теория гравитации элементарных частиц, установившая электромагнитную природу гравитации и получившая уравнения гравитационного поля элементарных частиц, отличные от уравнений гравитации, на основании которых была построена не одна математическая сказка в физике.

В настоящий момент, полевая теория элементарных частиц (в отличие от Стандартной модели) не противоречит экспериментальным данным о строении и спектре элементарных частиц и поэтому может рассматриваться физикой в качестве работающей в природе теории.

Структура электромагнитного поля протона (E-постоянное электрическое поле,H-постоянное магнитное поле, желтым цветом отмечено переменное электромагнитное поле)
Энергетический баланс (процент от всей внутренней энергии):

  • постоянное электрическое поле (E) - 0,346%,
  • постоянное магнитное поле (H) - 7,44%,
  • переменное электромагнитное поле - 92,21%.
Отсюда следует, что для протона m 0~ =0.9221m 0 и около 8 процентов его массы сосредоточено в постоянных электрическом и магнитном полях. Соотношение между энергией сосредоточенной в постоянном магнитном поле протона и энергии сосредоточенной в постоянном электрическом поле равно 21,48. Этим объясняется наличие у протона ядерных сил .

Электрическое поле протона состоит из двух областей: внешней области с положительным зарядом и внутренней области с отрицательным зарядом. Разность зарядов внешней и внутренней областей определяет суммарный электрический заряд протона +e. В основе его квантования лежат геометрия и строение элементарных частиц.

А так выглядят фундаментальные взаимодействия элементарных частиц, действительно существующие в природе:

4 Радиус протона

Полевая теория элементарных частиц определяет радиус (r) частицы как расстояние от центра до точки в которой достигается максимум плотности массы.

Для протона это будет 3,4212 ∙10 -16 м. К этому надо добавить еще толщину слоя электромагнитного поля, получится радиус области пространства, занимаемой протоном:

Для протона это будет 4,5616 ∙10 -16 м. Таким образом, внешняя граница протона находится от центра частицы на расстоянии 4,5616 ∙10 -16 м. Небольшая часть массы, сосредоточенная в постоянном электрическом и постоянном магнитном поле протона, в соответствии с законами электродинамики, находится за пределами данного радиуса.

5 Магнитный момент протона

В противовес квантовой теории, полевая теория элементарных частиц утверждает, что магнитные поля элементарных частиц не создаются спиновым вращением электрических зарядов, а существуют одновременно с постоянным электрическим полем как постоянная составляющая электромагнитного поля. Поэтому постоянные магнитные поля есть у всех элементарных частиц с квантовым числом L>0 .
Полевая теория элементарных частиц не считает магнитный момент протона аномальным - его величина определяется набором квантовых чисел в той степени, в какой квантовая механика работает в элементарной частице.
Так основной магнитный момент протона создается двумя токами:

  • (+) с магнитным моментом +2 (eħ/m 0 c)
  • (-) с магнитным моментом -0,5 (eħ/m 0 c)
Для получения результирующего магнитного момента протона надо сложить оба момента, умножить на процент энергии, содержащийся в волновом переменном электромагнитном поле протона (разделенный на 100%) и добавить спиновую составляющую (см. Полевая теория элементарных частиц. Часть 2, раздел 3.2), в результате получим 1,3964237 eh/m 0p c. Для того чтобы перевести в обычные ядерные магнетоны надо полученное число умножить на два - в итоге имеем 2,7928474.

Когда физика предполагала, что магнитные моменты элементарных частиц создаются спиновым вращением их электрического заряда, для их измерения были предложены соответствующие единицы: для протона - это eh/2m 0p c (вспомним, что величина спина протона равна 1/2) названная ядерным магнетоном. Теперь 1/2 можно было бы и опустить, как не несущую смысловой нагрузки, и оставить просто eh/m 0p c.

А если серьезно, то внутри элементарных частиц нет электрических токов, но есть магнитные поля (и нет электрических зарядов, но есть электрические поля). Невозможно заменить подлинные магнитные поля элементарных частиц, на магнитные поля токов (как и подлинные электрические поля элементарных частиц, на поля электрических зарядов), без потери точности - эти поля имеют разную природу. Здесь какая-то другая электродинамика - Электродинамика Физики Поля, которую еще предстоит создать, как и саму Физику Поля.

6 Электрическое поле протона

6.1 Электрическое поле протона в дальней зоне

Знания физики об структуре электрического поля протона менялись по мере развития физики. Первоначально считалось, что электрическое поле протона представляет собой поле точечного электрического заряда +e. Для данного поля будут:
потенциал электрического поля протона в точке (А) в дальней зоне (r > > r p) точно, в системе СИ равен:

напряженность E электрического поля протона в дальней зоне (r > > r p) точно, в системе СИ равна:

где n = r /|r| - единичный вектор из центра протона в направлении точки наблюдения (А), r - расстояние от центра протона до точки наблюдения, e - элементарный электрический заряд, жирным шрифтом выделены вектора, ε 0 - электрическая постоянная, r p =Lħ/(m 0~ c) - радиус протона в полевой теории, L - главное квантовое число протона в полевой теории, ħ - постоянная Планка, m 0~ - величина массы заключенной в переменном электромагнитном поле покоящегося протона, C - скорость света. (В системе СГС отсутствует множитель Множитель СИ .)

Данные математические выражения верны для дальней зоны электрического поля протона: r p , но физика тогда предполагала, что их верность распространяется и в ближней зоне, до расстояний порядка 10 -14 см.

6.2 Электрические заряды протона

В первой половине 20 века физика считала, что у протона имеется только один электрический заряд и он равен +e.

После появления гипотезы кварков, физика предположила что внутри протона имеются не один, а три электрических заряда: два электрических заряда +2e/3 и один электрический заряд -e/3. В сумме эти заряды дают +e. Это было сделано, поскольку физика предположила, что протон имеет сложную структуру и состоит из двух u-кварков с зарядом +2e/3 и одного d-кварка с зарядом -e/3. Но кварки не были найдены ни в природе, ни на ускорителях ни при каких энергиях и оставалось либо принять их существование на веру (что и сделали сторонники Стандартной модели), либо искать другую структуру элементарных частиц. Но вместе с этим в физике постоянно накапливалась экспериментальная информация об элементарных частицах и когда ее накопилось достаточно для переосмысления сделанного, на свет появилась полевая теория элементарных частиц.

Согласно полевой теории элементарных частиц, постоянное электрическое поле элементарных частиц с квантовым числом L>0, как заряженных, так и нейтральных, создается постоянной компонентой электромагнитного поля соответствующей элементарной частицы (не электрический заряд является первопричиной электрического поля, как физика считала в 19 веке, а электрические поля элементарных частиц таковы, что они соответствуют полям электрических зарядов). А поле электрического заряда возникает в результате наличия асимметрии между внешней и внутренней полусферами, генерирующими электрические поля противоположных знаков. Для заряженных элементарных частиц в дальней зоне генерируется поле элементарного электрического заряда, а знак электрического заряда определяется знаком электрического поля, генерируемого внешней полусферой. В ближней зоне данное поле обладает сложной структурой и является дипольным, но дипольным моментом оно не обладает. Для приближенного описания данного поля как системы точечных зарядов потребуется не менее 6 "кварков" внутри протона - будет точнее, если взять 8 "кварков". Понятное дело, что электрические заряды таких "кварков" будут совершенно иными, чем считает стандартная модель (со своими кварками).

Полевая теория элементарных частиц установила, что у протона, как и у любой другой положительно заряженной элементарной частицы, можно выделить два электрических заряда и соответственно два электрических радиуса :

  • электрический радиус внешнего постоянного электрического поля (заряда q + =+1.25e) - r q+ = 4.39 10 -14 см,
  • электрический радиус внутреннего постоянного электрического поля (заряда q - =-0.25e) - r q- = 2.45 10 -14 см.
Данные характеристики электрического поля протона соответствуют распределению 1 полевой теории элементарных частиц. Физика пока экспериментально не установила точность данного распределения и какое распределение наиболее точно соответствует реальной структуре постоянного электрического поля протона в ближней зоне, равно как и саму структуру электрического поля протона в ближней зоне (на расстояниях порядка r p). Как видите, электрические заряды близки по величине к зарядам предполагаемых кварков (+4/3e=+1.333e и -1/3e=-0.333e) в протоне, но в отличие от кварков, электромагнитные поля в природе существуют, и аналогичной структурой постоянного электрического поля обладает любая положительно заряженная элементарная частица, независимо от величины спина и... .

Величины электрических радиусов для каждой элементарной частицы уникальны и определяются главным квантовым числом в полевой теории L, величиной массы покоя, процентом энергии заключенной в переменном электромагнитном поле (где работает квантовая механика) и структурой постоянной составляющей электромагнитного поля элементарной частицы (одинаковой для всех элементарных частиц с заданным главным квантовым числом L), генерирующей внешнее постоянное электрическое поле. Электрический радиус указывает среднее местонахождение равномерно распределенного по окружности электрического заряда, создающего аналогичное электрическое поле. Оба электрических заряда лежат в одной плоскости (плоскости вращения переменного электромагнитного поля элементарной частицы) и имеют общий центр, совпадающий с центром вращения переменного электромагнитного поля элементарной частицы.


6.3 Электрическое поле протона в ближней зоне

Зная величины электрических зарядов внутри элементарной частицы и их местоположение, можно определить и создаваемое ими электрическое поле.

электрического поля протона в ближней зоне (r~r p), в системе СИ, как векторная сумма, приблизительно равна:

Где n + = r + /|r + | - единичный вектор из ближней (1) или дальней (2) точки заряда протона q + в направлении точки наблюдения (А), n - = r - /|r - | - единичный вектор из ближней (1) или дальней (2) точки заряда протона q - в направлении точки наблюдения (А), r - расстояние от центра протона до проекции точки наблюдения на плоскость протона, q + - внешний электрический заряд +1.25e, q - - внутренний электрический заряд -0.25e, жирным шрифтом выделены вектора, ε 0 - электрическая постоянная, z - высота точки наблюдения (А) (расстояние от точки наблюдения до плоскости протона), r 0 - нормировочный параметр. (В системе СГС отсутствует множитель Множитель СИ .)

Данное математическое выражение представляет собой сумму векторов и ее надо вычислять по правилам сложения векторов, поскольку это поле двух распределенных электрических зарядов (+1.25e и -0.25e). Первое и третье слагаемое соответствуют ближним точкам зарядов, второе и четвертое - дальним. Данное математическое выражение не работает во внутренней (кольцевой) области протона, генерирующей его постоянные поля (при одновременном выполнении двух условий: ħ/m 0~ c
Потенциал электрического поля протона в точке (А) в ближней зоне (r~r p), в системе СИ приблизительно равен:

Где r 0 - нормировочный параметр, величина которого может отличаться от r 0 в формуле E. (В системе СГС отсутствует множитель Множитель СИ .) Данное математическое выражение не работает во внутренней (кольцевой) области протона, генерирующей его постоянные поля (при одновременном выполнении двух условий: ħ/m 0~ c
Калибровку r 0 для обоих выражений ближней зоны необходимо производить на границе области, генерирующей постоянные поля протона.

7 Масса покоя протона

В соответствии с классической электродинамикой и формулой Эйнштейна, масса покоя элементарных частиц с квантовым числом L>0, в том числе и протона, определяется как эквивалент энергии их электромагнитных полей:

где определенный интеграл берется по всему электромагнитному полю элементарной частицы, E - напряженность электрического поля, H - напряженность магнитного поля. Здесь учитываются все компоненты электромагнитного поля: постоянное электрическое поле, постоянное магнитное поле, переменное электромагнитное поле. Эта маленькая, но очень емкая для физики формула, на основании которой получены уравнения гравитационного поля элементарных частиц, отправит в утиль не одну сказочную "теорию" - поэтому ее возненавидят некоторые их авторы.

Как следует из приведенной формулы, величина массы покоя протона зависит от условий, в которых протон находится . Так поместив протон в постоянное внешнее электрическое поле (например, атомное ядро), мы повлияем на E 2 , что отразится на массе протона и его стабильности. Аналогичная ситуация возникнет при помещении протона в постоянное магнитное поле. Поэтому некоторые свойства протона внутри атомного ядра, отличаются от тех же свойств свободного протона в вакууме, вдали от полей.

8 Время жизни протона

Установленное физикой время жизни протона соответствует свободному протону.

Полевая теория элементарных частиц утверждает, что время жизни элементарной частицы зависит от условий, в которых она находится . Поместив протон во внешнее поле (например, электрическое) мы изменяем энергию, содержащуюся в его электромагнитном поле. Можно выбрать знак внешнего поля так, чтобы внутренняя энергия протона увеличилась. Можно подобрать такую величину напряженности внешнего поля, что станет возможным распад протона в нейтрон позитрон и электронное нейтрино и следовательно протон станет нестабильным. Именно это наблюдается в атомных ядрах, в них электрическое поле соседних протонов запускает распад протона ядра. При внесении в ядро дополнительной энергии распады протонов могут начаться при меньшей напряженности внешнего поля.

Одна интересная особенность: во время распада протона в атомном ядре, в электромагнитном поле ядра из энергии электромагнитного поля рождается позитрон - из "вещества" (протон) рождается "антивещество" (позитрон)!!! и это никого не удивляет.

9 Правда о Стандартной модели

А теперь познакомимся с информацией, которую сторонники Стандартной модели не допустят к публикации на "полит-корректных" сайтах, (таких как мировая Википедия) на которых противники Новой физики могут безжалостно удалять (или искажать) информацию сторонников Новой физики, в результате чего ПРАВДА пала жертвой политики:

В 1964 году Гелл-манн и Цвейг независимо предложили гипотезу существования кварков, из которых, по их мнению, состоят адроны. Новые частицы были наделены дробным электрическим зарядом, не существующим в природе.
Лептоны в эту Кварковую модель, которая впоследствии переросла в Стандартную модель, НЕ вписались - поэтому были признаны истинно элементарными частицами.
Чтобы объяснить связь кварков в адроне, было предположено существование в природе сильного взаимодействия и его переносчиков - глюонов. Глюоны, как и положено в Квантовой теории, наделили единичным спином, тождественности частицы и античастицы и нулевой величиной массы покоя, как у фотона.
В действительности, в природе существует не сильное взаимодействие гипотетических кварков, а ядерные силы нуклонов - и это разные понятия.

Прошло 50 лет. Кварки так и не были найдены в природе и нам сочинили новую математическую сказочку под названием "Конфайнмент" . Мыслящий человек с легкостью увидит в ней откровенное игнорирование фундаментального закона природы - закона сохранения энергии. Но это сделает мыслящий человек, а сказочники получили устроившее их оправдание.

Глюоны также НЕ были найдены в природе. Дело в том, что единичным спином могут обладать в природе только векторные мезоны (и еще одно из возбужденных состояний мезонов), но у каждого векторного мезона имеется античастица. - Поэтому векторные мезоны на кандидаты в "глюоны" никак не подходят . Остается девятка первых возбужденный состояний мезонов, но 2 из них противоречат самой Стандартной модели и их существование в природе Стандартная модель не признает, а остальные неплохо изучены физикой, и выдать их за сказочные глюоны не получится. Есть еще последний вариант: выдать за глюон связанное состояние из пары лептонов (мюонов или тау-лептонов) - но и это при распаде можно вычислить.

Так что, глюонов в природе также нет, как нет в природе кварков и вымышленного сильного взаимодействия .
Вы считаете, что сторонники Стандартной модели этого не понимают - еще как понимают, вот только тошно признать ошибочность того, чем занимался десятилетиями. А потому мы видим новые математические сказки ("теорию" струн и т.д.).


10 Новая физика: Протон - итог

Я не стал в основной части статьи подробно говорить о сказочных кварках (со сказочными глюонами), поскольку их в природе НЕТ и нечего забивать голову сказками (без необходимости) - а без основополагающих элементов фундамента: кварков с глюонами рухнула стандартная модель - время ее господства в физике ЗАВЕРШИЛОСЬ (см. Стандартная модель).

Можно сколь угодно долго не замечать места электромагнетизма в природе (встречаясь с ним на каждом шагу: свет, тепловое излучение, электричество, телевидение, радио, телефонная связь, в том числе и сотовая, интернет, без которого человечество не узнало бы о существовании Полевой теории элементарных частиц, ...), и продолжать сочинять новые сказочки взамен обанкротившихся, выдавая их за науку; можно с упорством, достойным лучшего применения, продолжать повторять заученные СКАЗКИ Стандартной модели и Квантовой теории; но электромагнитные поля в природе были, есть, будут и прекрасно обходятся без сказочных виртуальных частиц, впрочем как и создаваемая электромагнитными полями гравитация, а вот у сказок есть время рождения и время, когда они перестают влиять на людей. Что касается природы, то ей НЕТ никакого дела до сказок, и любой иной литературной деятельности человека, даже если за них присуждается Нобелевская премия по физике. Природа устроена так, как она устроена, а задача ФИЗИКИ-НАУКИ понять и описать это.

Теперь перед Вами открылся новый мир - мир дипольных полей, о существовании которых физика 20 века и не подозревала . Вы увидели, что у протона имеются не один, а два электрических заряда (внешний и внутренний) и соответствующие им два электрических радиуса. Вы увидели, из чего складывается масса покоя протона и что воображаемый бозон Хиггса оказался не у дел (решения Нобелевского комитета - это еще не законы природы...). Более того, величина массы и время жизни зависят от полей, в которых находится протон. Из того, что свободный протон стабилен, еще не следует, что он будет оставаться стабильным всегда и везде (распады протона наблюдаются в атомных ядрах). Все это выходит за рамки представлений, господствовавших в физике второй половины двадцатого века. - Физика 21 века - Новая физика переходит на новый уровень познания материи , а нас ждут новые интересные открытия.

Владимир Горунович

  • Перевод

Рис. 1: атом водорода. Не в масштабе.

Вы знаете, что Большой адронный коллайдер в основном занимается тем, что сталкивает друг с другом протоны. Но что такое протон?

В первую очередь – ужасная и полная неразбериха. Настолько же уродливая и хаотичная, насколько прост и элегантен атом водорода.

Но что тогда такое атом водорода?

Это простейший пример того, что физики называют «связанным состоянием». «Состояние», по сути, означает некую штуку, существующую довольно долгое время, а «связанное» означает, что её компоненты связаны друг с другом, будто супруги в браке. На самом деле, пример супружеской пары, в которой один супруг гораздо тяжелее другого, сюда очень хорошо подходит. Протон сидит в центре, едва двигаясь, а по краям объекта движется электрон, движется быстрее, чем вы и я, но гораздо медленнее скорости света, всеобщего скоростного ограничения. Мирный образ брачной идиллии.

Или он кажется таким, пока мы не заглянем в сам протон. Внутренности самого протона больше напоминают коммуну, где плотно расположено множество холостых взрослых и детей: чистый хаос. Это тоже связанное состояние, но связывает оно не нечто простое, вроде протона с электроном, как в водороде, или хотя бы несколько десятков электронов с атомным ядром, как в более сложных атомах типа золота – но несметное количество (то есть, их слишком много и они слишком быстро меняются, чтобы их можно было подсчитать практически) легковесных частиц под названием кварки, антикварки и глюоны. Невозможно просто описать структуру протона, нарисовать простые картинки – он чрезвычайно дезорганизован. Все кварки, глюоны, антикварки, мечутся внутри с максимально возможной скоростью, почти со скоростью света.


Рис. 2: Изображение протона. Представьте, что все кварки (верхний, нижний, странный - u,d,s), антикварки (u,d,s с чёрточкой), и глюоны (g) снуют туда-сюда почти со скоростью света, сталкиваются друг с другом, появляются и исчезают

Вы могли слышать, что протон состоит из трёх кварков. Но это ложь – во благо, но всё же довольно большая. На самом деле в протоне существует несметное количество глюонов, антикварков и кварков. Стандартное сокращение «протон состоит из двух верхних кварков и одного нижнего кварка» просто говорит о том, что в протоне на два верхних кварка больше, чем верхних антикварков, и на один нижний кварк больше, чем нижних антикварков. Чтобы это сокращение стало верным, необходимо добавлять к нему «и ещё несметные количества глюонов и пар кварк-антикварк». Без этой фразы представление о протоне будет настолько упрощённым, что понять работу БАК будет совершенно невозможно.


Рис. 3: Маленькая ложь во благо на стереотипном изображении из Википедии

В общем, атомы по сравнению с протонами похожи на па-де-де в изысканном балете по сравнению с дискотекой, заполненной пьяными подростками, прыгающими и машущими диджею.

Именно поэтому, если вы – теоретик, пытающийся понять, что увидит БАК в столкновениях протонов, вам будет сложно. Очень сложно предсказывать результаты столкновений объектов, которые нельзя описать простым способом. Но, к счастью, с 1970-х годов, на основе идей Бьёркена из 60-х, физики-теоретики нашли относительно простую и рабочую технологию. Но она всё же работает до определённых пределов, с точностью порядка 10%. По этой и некоторым другим причинам надёжность наших подсчётов на БАК всегда ограничена.

Ещё одна деталь по поводу протона – он крохотный. Реально крохотный. Если раздуть атом водорода до размеров вашей спальни, протон будет размером с такую маленькую крупицу пыли, что её будет очень трудно заметить. Именно потому, что протон настолько мал, мы можем игнорировать творящийся внутри него хаос, описывая атом водорода как простой. Точнее, размер протона в 100000 раз меньше размера атома водорода.

Для сравнения, размер Солнца всего в 3000 раз меньше размера Солнечной системы (если считать по орбите Нептуна). Именно так – в атоме более пусто, чем в Солнечной системе! Вспоминайте об этом, когда смотрите на небо ночью.

Но вы можете спросить: «Секундочку! Вы утверждаете, что Большой адронный коллайдер как-то сталкивает протоны, имеющие в 100000 раз меньшие размеры, чем атом? Да как это вообще возможно?»

Отличный вопрос.

Столкновения протонов против мини-столкновений кварков, глюонов и антикварков

Столкновения протонов на БАК происходят с определённой энергией. Это было 7 ТэВ = 7000 ГэВ в 2011 году, и 8 ТэВ = 8000 ГэВ в 2012-м. Но специалистам по физике частиц в основном интересны столкновения кварка одного протона с антикварком другого протона, или столкновениях двух глюонов, и т.п. – то, что может привести к появлению по-настоящему нового физического явления. Эти мини-столкновения несут в себе малую долю общей энергии столкновения протонов. Насколько большую часть этой энергии они могут переносить, и зачем нужно было увеличивать энергию столкновений с 7 ТэВ до 8 ТэВ?

Ответ – на рис. 4. На графике показано количество столкновений, зафиксированных в детекторе ATLAS. В данных от лета 2011 года участвуют рассеяние кварков, антикварков и глюонов с других кварков, антикварков и глюонов. Такие мини-столкновения чаще всего производят два джета (струи адронов, проявления высокоэнергетических кварков, глюонов или антикварков, выбитых из родительских протонов). Измеряют энергии и направления джетов, и из этих данных определяют количество энергии, которое должно было участвовать в мини-столкновении. На графике показано количество мини-столкновений такого типа в виде функции энергии. Вертикальная ось логарифмическая – каждая чёрточка обозначает увеличение количества в 10 раз (10 n обозначает 1 и n нулей после него). К примеру, количество мини-столкновений наблюдаемых в промежутке энергий от 1550 до 1650 ГэВ равнялось порядка 10 3 = 1000 (отмечено голубыми линиями). Учтите, что график начинается с энергии в 750 ГэВ, но количество мини-столкновений продолжает расти, если вы изучаете джеты с меньшими энергиями, вплоть до момента, когда джеты становятся слишком слабыми, чтобы их засечь.


Рис. 4: количество столкновений как функция энергии (m jj)

Учтите, что общее количество столкновений протон-протон с энергией в 7 ТэВ = 7000 ГэВ приблизилось к 100 000 000 000 000. И из всех этих столкновений только два мини-столкновения превысили отметку 3500 ГэВ – половину энергии столкновения протонов. Теоретически энергия мини-столкновения может возрасти до 7000 ГэВ, но вероятность этого всё время падает. Мы настолько редко видим мини-столкновения с энергией 6000 ГэВ, что вряд ли увидим энергию в 7000 ГэВ, даже если соберём в 100 раз больше данных.

В чём же преимущества повышения энергии столкновения от 7 ТэВ в 2010-2011 годах до 8 ТэВ в 2012-м? Очевидно, что теперь то, что вы могли делать на уровне энергии E, теперь вы можете сделать на уровне энергии в 8/7 E ≈ 1.14 E. Так что, если прежде можно было надеяться увидеть в таком количестве данных признаки определённого типа гипотетической частицы с массой в 1000 ГэВ/с 2 , то теперь можно надеяться достичь как минимум 1100 ГэВ/с 2 с тем же набором данных. Возможности машины возрастают – можно искать частицы чуть большей массы. А если в 2012 году вы наберёте в три раза больше данных, чем в 2011-м, вы получите большее число столкновений для каждого уровня энергии, и сможете увидеть признаки гипотетической частицы массой, допустим, 1200 ГэВ/с 2 .

Но это ещё не всё. Посмотрите на голубую и зелёную линии на рис. 4: они показывают, что происходят на энергиях порядка 1400 и 1600 ГэВ – таких, что соотносятся друг с другом, как 7 к 8. На уровне энергии столкновения протонов в 7 ТэВ количество мини-столкновений кварков с кварками, кварков с глюонами и т.п. с энергией 1400 ГэВ более чем в два раза превышает количество столкновений с энергией в 1600 ГэВ. Но когда машина увеличивает энергию на 8/7, то, что выполнялось для 1400, начинает выполняться для 1600. Иначе говоря, если вас интересуют мини-столкновения фиксированной энергии, их количество растёт – и гораздо больше, чем 14% роста энергии столкновения протонов! Это значит, что для любого процесса с предпочтительной энергией, допустим, появления легковесных частиц Хиггса, которое происходит на энергиях порядка 100-200 ГэВ, вы получаете больше результата за те же деньги. Рост с 7 до 8 ТэВ означает, что для того же количества столкновений протонов вы получаете больше частиц Хиггса. Производство частиц Хиггса увеличится примерно на 1,5. Количество верхних кварков и определённых типов гипотетических частиц увеличится чуть сильнее.

Это означает, что хотя в 2012 году количество столкновений протонов увеличено в 3 раза по сравнению с 2011-м, общее количество полученных частиц Хиггса увеличится почти в 4 раза просто из-за увеличения энергии.

Кстати, рис. 4 также доказывает, что протоны не состоят просто из двух верхних кварков и одного нижнего, как изображают на рисунках типа рис. 3. Если бы они были такими, тогда кварки должны были бы переносить порядка трети энергии протонов, и большая часть мини-столкновений проходила бы с энергиями порядка трети от энергии столкновения протонов: в районе 2300 ГэВ. Но на графике видно, что в районе 2300 ГэВ ничего особенного не происходит. С энергиями меньше 2300 ГэВ происходит гораздо больше столкновений, и чем ниже вы спускаетесь, тем больше столкновений видите. Всё оттого, что в протоне содержится огромное количество глюонов, кварков и антикварков, каждый из которых переносит малую часть энергии протона, но их так много, что они участвуют в огромном количестве мини-столкновений. Это свойство протона и показано на рис. 2 – хотя на самом деле количество низкоэнергетических глюонов и пар кварк-антикварк гораздо больше, чем изображено на рисунке.

Но вот чего график не показывает, так это доли, которые при мини-столкновениях с определённой энергией приходятся на столкновения кварков с кварками, кварков с глюонами, глюонов с глюонами, кварков с антикварками, и т.д. На самом деле, напрямую из экспериментов на БАК этого и нельзя сказать – джеты от кварков, антикварков и глюонов выглядят одинаково. Откуда нам известны эти доли – это история сложная, в неё входят множество различных прошлых экспериментов и комбинирующая их теория. И отсюда нам известно, что мини-столкновения самых высоких энергий обычно происходят у кварков с кварками и у кварков с глюонами. Столкновения на низких энергиях обычно происходят между глюонами. Столкновения кварков и антикварков происходят относительно редко, но они очень важны для определённых физических процессов.

Распределение частиц внутри протона


Рис. 5

Два графика, отличающихся масштабом вертикальной оси, показывают относительную вероятность столкновения с глюоном, верхним или нижним кварком, или антикварком, переносящим долю энергии протона, равную x. При малых x доминируют глюоны (а кварки и антикварки становятся равновероятными и многочисленными, хотя их всё равно меньше, чем глюонов), а при средних x доминируют кварки (хотя их становится крайне мало).

Оба графика демонстрируют одно и то же, просто с разным масштабом, поэтому то, что сложно увидеть на одном из них, проще рассмотреть на другом. А показывают они вот что: если в Большом адронном коллайдере на вас летит протонный луч, и вы ударяете по чему-либо внутри протона, насколько вероятно то, что вы ударите верхний кварк, или нижний кварк, или глюон, или верхний антикварк, или нижний антикварк, переносящий долю энергии протона, равную x? Из этих графиков можно вынести, что:

Из того, что все кривые очень быстро растут при малых x (видно на нижнем графике), следует, что большая часть частиц в протоне переносит менее 10% (x < 0,1) энергии протона, и вероятность столкнуться с частицей, переносящей мало энергии, гораздо больше вероятности столкнуться с частицей, переносящей много. При этом, 10% - не так уж и мало. В 2012 году лучи на БАК достигали энергий в 4 ТэВ, поэтому 10% означало 400 ГэВ. При этом для того, чтобы создать частицу хиггса энергией 124 ГэВ из двух глюонов требуется всего 62 ГэВ на глюон.
Из того, что жёлтая кривая (снизу) гораздо выше остальных, следует, что если вы столкнулись с чем-то, переносящим менее 10% энергии протона, то это, скорее всего, глюон; а опустившись ниже 2% энергии протона это с равной вероятностью будут кварки или антикварки.
Из того, что кривая глюона (вверху) опускается ниже кривых кварков при увеличении х, следует, что если вы столкнулись с чем-либо, переносящим более 20% (x > 0,2) энергии протона – что бывает очень, очень редко – это, скорее всего, кварк, при этом вероятность того, что это верхний кварк, в два раза больше вероятности, что это нижний кварк. Это остатки идеи, что «протон – это два верхних кварка и один нижний».
Все кривые с увеличением х резко падают; очень маловероятно, что вы столкнётесь с чем-либо, переносящим более 50% энергии протона.

Эти наблюдения непрямым образом отражаются на графике с рис. 4. Вот ещё пара неочевидных вещей по поводу двух графиков:
Большая часть энергии протона делится (примерно одинаково) между небольшим количеством высокоэнергетических кварков и огромным количеством низкоэнергетических глюонов.
Среди частиц по количеству преобладают низкоэнергетические глюоны, а за ними уже идут кварки и антикварки очень низких энергий.

Количество кварков и антикварков огромно, но: общее количество верхних кварков за вычетом общего количество верхних антикварков равно двум, а общее количество нижних кварков за вычетом общего количества нижних антикварков, равно одному. Как мы видели выше, лишние кварки переносят ощутимую (но не основную) часть энергии протона, летящего на вас. И только в этом смысле можно сказать, что протон в основном состоит из двух верхних кварков и одного нижнего.

Кстати, вся эта информация была получена из захватывающей комбинации экспериментов (в основном по рассеянию электронов или нейтрино с протонов или с атомных ядер тяжёлого водорода – дейтерия, содержащего один протон и один нейтрон), собранных вместе при помощи подробных уравнений, описывающих электромагнитные, сильные ядерные и слабые ядерные взаимодействия. Эта долгая история тянется с конца 1960-х и начала 1970-х. И она прекрасно работает для предсказания явлений, наблюдаемых в коллайдерах, где сталкиваются протоны с протонами и протоны с антипротонами – таких, как Тэватрон и БАК.

Другие доказательства сложной структуры протона

Давайте посмотрим на кое-какие данные, полученные на БАК, и то, как они подтверждают утверждения о строении протона (хотя текущее понимание протона появилось уже 3-4 десятилетия назад, благодаря множеству экспериментов).

График на рис. 4 получен из наблюдений за столкновениями, в процессе которых происходит что-то вроде изображённого на рис. 6: кварк или антикварк или глюон одного протона сталкиваются с кварком или антикварком или глюоном другого протона, рассеиваются с него (или происходит что-то более сложное – к примеру, два глюона сталкиваются и превращаются в кварк и антикварк), в результате чего две частицы (кварки, антикварки или глюоны) разлетаются от точки столкновения. Две этих частицы превращаются в джеты (струи адронов). Энергия и направление джетов наблюдаются в детекторах частиц, окружающих точку столкновения. Эта информация используется, чтобы понять, сколько энергии содержалось в столкновении двух изначальных кварков/глюонов/антикварков. Точнее говоря, инвариантная масса двух джетов, помноженная на c 2 , даёт энергию столкновения двух изначальных кварков/глюонов/антикварков.


Рис. 6

Количество столкновений такого типа в зависимости от энергии дано на рис. 4. То, что на низких энергиях количество столкновений гораздо больше, подтверждает тот факт, что большая часть частиц внутри протона переносит только малую долю его энергии. Данные начинаются с энергий в 750 ГэВ.


Рис. 7: данные для более низких энергий, взятые из меньшего набора данных. Dijet mass – то же, что m jj на рис. 4.

Данные для рис. 7 взяты из эксперимента CMS от 2010 года, на котором они строили график столкновений плоть до энергий в 220 ГэВ. Здесь построен график не количества столкновений, а немного сложнее: количества столкновений на ГэВ, то есть количество столкновений поделено на ширину столбца гистограммы. Видно, что тот же самый эффект продолжает работать на всём диапазоне данных. Столкновений типа тех, что изображены на рис. 6, при низких энергиях происходит гораздо больше, чем при высоких. И это количество продолжает расти до тех пор, пока уже невозможно становится различать джеты. В протоне содержится очень много низкоэнергетических частиц, и мало какие из них переносят ощутимую долю его энергии.

Что насчёт наличия в протоне антикварков? Три из самых интересных процессов, не похожих на столкновение, изображённое на рис. 6, иногда происходящие на БАК (в одном из нескольких миллионов столкновений протон-протон) включают процесс:

Кварк + антикварк -> W + , W - или Z-частица.

Они показаны на рис. 8.


Рис. 8

Соответствующие данные с CMS даны на рис. 9 и 10. Рис. 9 показывает, что количество столкновений, в результате которых появляется электрон или позитрон (слева) и нечто необнаружимое (вероятно, нейтрино или антинейтрино), или же мюон и антимюон (справа), предсказано правильно. Предсказание делается комбинированием Стандартной Модели (уравнений, предсказывающих поведение известных элементарных частиц) и структуры протона. Большие пики данных возникают из-за появления частиц W и Z. Теория прекрасно совпадает с данными.


Рис. 9: чёрные точки – данные, жёлтое – предсказания. Количество событий указано в тысячах. Слева: центральный пик появляется из-за нейтрино в частицах W. Справа комбинируются лептон и антилептон, появляющиеся в столкновении, и подразумевается масса частицы, из которой они появились. Пик появляется из-за получающихся частиц Z.

Ещё больше деталей можно видеть на рис. 10, где показано, что теория по количеству не только указанных, но и многих связанных с ними измерений – большинство из которых связаны со столкновениями кварков с антикварками – прекрасно совпадает с данными. Данные (красные точки) и теория (синие отрезки) никогда не совпадают точно из-за статистических флуктуаций, по той же причине, по которой вы, десять раз подбросив монету, не получите обязательно пять «орлов» и пять «решек». Поэтому точки-данные размещаются в пределах «полосы ошибки», вертикальной красной полоски. Размер полосы такой, что для 30% измерений полоса ошибки должна граничить с теорией, и всего для 5% измерений она должна отстоять от теории на две полосы. Видно, что все свидетельства подтверждают, что в протоне содержится множество антикварков. И мы правильно понимаем количество антикварков, переносящих определённую долю энергии протона.


Рис. 10

Дальше всё немного сложнее. Мы знаем даже, сколько у нас есть верхних и нижних кварков в зависимости от переносимой ими энергии, поскольку правильно предсказываем – с погрешностью менее 10% - насколько частиц W + получается больше, чем частиц W - (рис. 11).


Рис. 11

Соотношение верхних антикварков к нижним должно быть близко к 1, но верхних кварков должно быть больше, чем нижних, особенно при высоких энергиях. На рис. 6 можно видеть, что соотношение получающихся частиц W + и W - должно приблизительно давать нам соотношение верхних кварков и нижних кварков, участвующих в производстве частиц W. Но на рис. 11 видно, что измеренное отношение частиц W + к W - равно 3 к 2, а не 2 к 1. Это тоже показывает, что наивное представление о протоне, как о состоящем из двух верхних кварков и одного нижнего кварка слишком упрощено. Упрощённое соотношение 2 к 1 размывается, поскольку в протоне содержится множество пар кварк-антикварк, из которых верхних и нижних получается примерно поровну. Степень размытия определяется массой частицы W в 80 ГэВ. Если сделать её легче, размытия будет больше, а если тяжелее – меньше, поскольку большая часть пар кварк-антикварк в протоне переносит мало энергии.

Наконец, давайте подтвердим тот факт, что большая часть частиц в протоне – это глюоны.


Рис. 12

Для этого мы будем использовать тот факт, что верхние кварки можно создать двумя способами: кварк + антикварк -> верхний кварк + верхний антикварк, либо глюон + глюон -> верхний кварк + верхний антикварк (рис. 12). Мы знаем количество кварков и антикварков в зависимости от переносимой ими энергии на основе измерений, проиллюстрированных на рис. 9-11. Исходя из этого, можно использовать уравнения Стандартной Модели для предсказания того, сколько верхних кварков получится из столкновений только кварков и антикварков. Также мы считаем, на основании предыдущих данных, что в протоне глюонов больше, поэтому процесс глюон + глюон -> верхний кварк + верхний антикварк должен протекать не менее, чем в 5 раз чаще. Легко проверить, есть ли там глюоны; если их нет, данные должны лежать гораздо ниже теоретических предсказаний.
глюоны Добавить метки

Водорода, элемента, который имеет наиболее простое строение. Оно имеет положительный заряд и практически неограниченное время жизни. Это самая стабильная частица во Вселенной. Протоны, образовавшиеся в результате Большого Взрыва, до сих пор не распались. Масса протона составляет 1,627*10-27 кг или 938,272 эВ. Чаще эту величину выражают в электронвольтах.

Протон был открыт «отцом» ядерной физики Эрнестом Резерфордом. Он выдвинул гипотезу о том, что ядра атомов всех химических элементов состоят из протонов, так как по массе они превышают ядро атома водорода в целое число раз. Резерфорд поставил интересный опыт. В те времена уже была открыта естественная радиоактивность некоторых элементов. С помощью альфа-излучения (альфа-частицы представляют собой ядра гелия с высокими энергиями) ученый облучал атомы азота. В результате такого взаимодействия вылетала частица. Резерфорд предположил, что это протон. Дальнейшие опыты в пузырьковой камере Вильсона подтвердили его предположение. Так в 1913 году была открыта новая частица, но гипотеза Резерфорда о составе ядра оказалась несостоятельной.

Открытие нейтрона

Великий ученый нашел ошибку в своих расчетах и выдвинул гипотезу о существовании еще одной частицы, входящей в состав ядра и обладающей практически той же массой, что и протон. Экспериментально он не смог ее обнаружить.

Это сделал в 1932 году сделал английский ученый Джеймс Чедвик. Он поставил опыт, в ходе которого бомбардировал атомы бериллия высокоэнергетическими альфа-частицами. В результате ядерной реакции из ядра бериллия вылетала частица, впоследствии названная нейтроном. За свое открытие Чедвик уже через три года получил Нобелевскую премию.

Масса нейтрона действительно мало отличается от массы протона (1,622*10-27 кг), но эта частица не обладает зарядом. В этом смысле она нейтральна и в то же время способна вызывать деление тяжелых ядер. Из-за отсутствия заряда нейтрон может легко пройти через высокий кулоновский потенциальный барьер и внедриться в структуру ядра.

Протон и нейтрон обладают квантовыми свойствами (могут проявлять свойства частиц и волн). Нейтронное излучение используют в медицинских целях. Высокая проникающая способность позволяет этому излучению ионизировать глубинные опухоли и другие злокачественные образования и обнаруживать их. При этом энергия частиц относительно маленькая.

Нейтрон, в отличие от протона, нестабильная частица. Ее время жизни составляет около 900 секунд. Она распадается на протон, электрон и электронное нейтрино.

Источники:

  • Открытие протона и нейтрона

Очень часто в разных ситуациях люди слышат слово протон, а также ядро, нейтрон, электрон. Не всегда ученики и даже взрослые люди знают, откуда пошло это название и когда мир узнал про такие элементы.

Прошло большое количество времени прежде, чем ученые согласились, что все вещества состоят из молекул. Со временем даже смогли установить, что в своем составе атомы. После чего возник вопрос, из чего состоит атом. Атом включает в себя ядро и некоторое количество электронов, которые вращаются вокруг ядра.

Ядро атома водорода

Резерфорд, который был одним из первооткрывателем данного раздела физики и всю свою жизнь работал над развитием данного направления, предполагал, что в составе ядра любого химического элемента находится ядро водорода, что и сумел подтвердить с помощью опытов.

Эти опыты требовали значительной подготовки, и, проводя эксперименты, ученный и его ученики, часто приносили в жертву свое здоровье. Опыт проводился таким образом: с помощью альфа- происходила бомбардировка атомов азота. В итоге из ядер атомов азота выбивались разные частицы, которые фиксировались на светочувствительной пленке. Из-за слабого свечения Резерфорду приходилось по восемь часов сидеть в комнате без освещения, чтобы глаза лучше фиксировали световые следы.

Благодаря этим экспериментам Резерфорд смог по следам выбивания определить, что в атоме любого вещества есть именно атомы водорода и кислорода.

Протон

Частицу протон Резерфорд в 1919 году при проведении опыта, который доказал наличие в любом химическом элементе ядра атома водорода. Протон по сути является электроном, но с положительным знаком, он уравновешивает количество электронов, в такой ситуации атом называется нейтральным или незаряженным.

Название протон происходит от «протос», которое переводится с греческого как первый. Изначально, данную частицу хотели назвать от греческого слова «барос», которое означает тяжесть. Но в итоге было принято решение, что «протон» лучше описывает все качества данного элемента. Важно помнить, что масса протона приблизительно в 1840 раз больше, чем .

Нейтрон

Нейтрон также является одним из элементов атома. Данный элемент открыл Чедвик, после того как провел серию бомбардировок над ядром атома . При такой бомбардировке вылетали элементы, которые никак не реагировали на электрическое поле, поэтому их в итоге и назвали нейтронами.

Вселенная, которую порой называют космосом, состоит из галактик, то есть звездных систем. Сегодня есть различные гипотезы о возникновении Вселенной, но нет ни одного научно доказанного факта. Все эти теории строятся на основании предположений и расчетов различных ученых.

Инструкция

Основоположником изучения Вселенной стал польский астроном Николай Коперник, написавший труд о гелиоцентрической системе, в котором говорилось, что Земля является частью большой . В последующие времена труды Н. Коперника совершенствовали и дополняли другие ученые, но именно поляк сумел дать человечеству базовые знания о космическом мироустройстве.

Наиболее всестороннее и полное изучение Вселенной началось лишь в 20 веке. Это было связано с развитием технологий в науке. На данный момент известно, что основной химический элемент, который входит в состав Вселенной, - это водород. Его объем составляет 75% от общего условного объема, на втором месте стоит гелий, объем которого составляет 23%. Остальное занимают незначительные химические примеси. Долгие годы человечество наблюдает за развитием Вселенной для того, чтобы понять причины ее возникновения.

Похожие статьи

© 2024 rsrub.ru. О современных технологиях кровли. Строительный портал.