Суммарный ряд. Числовые ряды онлайн калькулятор с решением

Числовой ряд является некой последовательностью, которая рассматривается совместно с другой последовательностью (ее еще называют последовательностью частичных сумм). Подобные понятия применяются в математическом и комплексном анализе.

Сумму числового ряда можно легко вычислить в Excel с помощью функции РЯД.СУММ. Рассмотрим на примере, как работает данная функция, а после построим график функций. Научимся применять числовой ряд на практике при подсчете роста капитала. Но для начала немного теории.

Сумма числового ряда

Числовой ряд можно рассматривать как систему приближений к числам. Для его обозначения применяют формулу:

Здесь показана начальная последовательность чисел ряда и правило суммирования:

  • ∑ - математический знак суммы;
  • a i - общий аргумент;
  • i - переменная, правило для изменения каждого последующего аргумента;
  • ∞ - знак бесконечности, «предел», до которого проводится суммирование.

Запись обозначает: суммируются натуральные числа от 1 до «плюс бесконечности». Так как i = 1, то подсчет суммы начинается с единицы. Если бы здесь стояло другое число (например, 2, 3), то суммировать мы начинали бы с него (с 2, 3).

В соответствии с переменной i ряд можно записать развернуто:

А 1 + а 2 + а 3 + а 4 + а 5 + … (до «плюс бесконечности).

Определение суммы числового ряда дается через «частичные суммы». В математике они обозначаются Sn. Распишем наш числовой ряд в виде частичных сумм:

S 2 = а 1 + а 2

S 3 = а 1 + а 2 + а 3

S 4 = а 1 + а 2 + а 3 + а 4

Сумма числового ряда – это предел частичных сумм S n . Если предел конечен, говорят о «сходящемся» ряде. Бесконечен – о «расходящемся».

Сначала найдем сумму числового ряда:

Теперь построим в Excel таблицу значений членов ряда:

Общий первый аргумент берем из формулы: i=3.

Все следующие значения i находим по формуле: =B4+$B$1. Ставим курсор в нижний правый угол ячейки В5 и размножаем формулу.


Найдем значения. Делаем активной ячейку С4 и вводим формулу: =СУММ(2*B4+1). Копируем ячейку С4 на заданный диапазон.



Значение суммы аргументов получаем с помощью функции: =СУММ(C4:C11). Комбинация горячих клавиш ALT+«+» (плюс на клавиатуре).



Функция РЯД.СУММ в Excel

Для нахождения суммы числового ряда в Excel применяется математическая функция РЯД.СУММ. Программой используется следующая формула:

Аргументы функции:

  • х – значение переменной;
  • n – степень для первого аргумента;
  • m – шаг, на который увеличивается степень для каждого последующего члена;
  • а – коэффициенты при соответствующих степенях х.

Важные условия для работоспособности функции:

  • все аргументы обязательные (то есть все должны быть заполнены);
  • все аргументы – ЧИСЛОвые значения;
  • вектор коэффициентов имеет фиксированную длину (предел в «бесконечность» не подойдет);
  • количество «коэффициентов» = числу аргументов.

Вычисление суммы ряда в Excel

Та же функция РЯД.СУММ работает со степенными рядами (одним из вариантов функциональных рядов). В отличие от числовых, их аргументы являются функциями.

Функциональные ряды часто используются в финансово-экономической сфере. Можно сказать, это их прикладная область.

Например, положили в банк определенную сумму денег (а) на определенный период (n). Имеем ежегодную выплату х процентов. Для расчета наращенной суммы на конец первого периода используется формула:

S 1 = a (1 + x).

На конец второго и последующих периодов – вид выражений следующий:

S 2 = a (1 + x) 2 ; S 3 = a (1 + x) 2 и т.д.

Чтобы найти общую сумму:

S n = a (1 + x) + a (1 + x) 2 + a (1 + x) 3 + … + a (1 + x) n

Частичные суммы в Excel можно найти с помощью функции БС().

Исходные параметры для учебной задачи:

Используя стандартную математическую функцию, найдем накопленную сумму в конце срока сумму. Для этого в ячейке D2 используем формулу: =B2*СТЕПЕНЬ(1+B3;4)

Теперь в ячейке D3 решим эту же задачу с помощью встроенной функции Excel: =БС(B3;B1;;-B2)


Результаты одинаковые, как и должно быть.

Как заполнить аргументы функции БС():


  1. «Ставка» - процентная ставка, под которую оформлен вклад. Так как в ячейке В3 установлен процентный формат, мы в поле аргумента просто указали ссылку на эту ячейку. Если было бы указано число, то прописывали бы его сотую долю (20/100).
  2. «Кпер» - число периодов для выплат процентов. В нашем примере – 4 года.
  3. «Плт» - периодические выплаты. В нашем случае их нет. Поэтому поле аргумента не заполняем.
  4. «Пс» - «приведенная стоимость», сумма вклада. Так как мы на время расстаемся с этими деньгами, параметр указываем со знаком «-».

Таким образом, функция БС помогла найти нам сумму функционального ряда.

В Excel есть и другие встроенные функции для нахождения разных параметров. Обычно это функции для работы с инвестиционными проектами, ценными бумагами и амортизационными платежами.

Построение графика функций суммы числового ряда

Построим график функций, отражающий рост капитала. Для этого нам нужно построить график функции являющейся суммой построенного ряда. За пример, возьмем те же данные по вкладу:


В первой строке показана накопленная сумма через год. Во второй – через два. И так далее.

Сделаем еще один столбец, в котором отразим прибыль:


Как мы считали – в строке формул.

На основании полученных данных построим график функций.

Выделим 2 диапазона: A5:A9 и C5:C9. Переходим на вкладку «Вставка» - инструмент «Диаграммы». Выбираем первый график:



Сделаем задачу еще более "прикладной". В примере мы использовали сложные проценты. Они начисляются на наращенную в предыдущем периоде сумму.

Возьмем для сравнения простые проценты. Формула простых процентов в Excel: =$B$2*(1+A6*B6)


Добавим полученные значения в график «Рост капитала».


Какие именно выводы сделает инвестор – очевидно.

Математическая формула частичной суммы функционального ряда (с простыми процентами): S n = a (1 + x*n), где а – первоначальная сумма вклада, х – проценты, n – период.

Основные понятия и определения

Пусть задана бесконечная числовая последовательность :

, … (1.1)

В прошлом году мы определяли числовую последовательность как функцию натурального аргумента. Это означает, что каждый член последовательности является функцией своего номера п : . В дальнейшем иногда будем рассматривать и п , равное нулю, поэтому числовую последовательность будем определять как функцию целочисленного аргумента (от слов «целое число»).

Определение 1. Выражение

(1.2)

называется бесконечным числовым рядом , или, короче, рядом . Члены последовательности ,… называются членами ряда ; выражение с индексом п - общим членом ряда .

Отличить последовательность от ряда просто: члены последовательности пишутся через запятую, члены ряда соединены знаками плюс.

Таким образом, понятие ряда является обобщением суммирования на случай бесконечного числа слагаемых.

Ряд считается заданным, если известна (задана) формула его общего члена. Общий член ряда (1.2) совпадает с общим членом последовательности (1.1) и также является функцией целочисленного аргумента n , т.е. . Например, если задан общий член в виде

, (1.3)

то, полагая в этой формуле n = 1, 2, 3,..., можно найти любой член ряда, а тем самым и весь ряд:

- члены последовательности или члены ряда,

(1.4)

Числовой ряд.

Определение. Сумма n первых членов ряда называется n- ой частичной суммой ряда и обозначается символом :

Можно записать так: .

В частности,

Составим из всех частичных сумм ряда (1.2) числовую последовательность :

(1.7)

Она называется последовательностью частичных сумм. Как всякая числовая последовательность, она может иметь предел, т.е. сходиться, или не иметь предела, т.е. расходиться. Предел последовательности частичных сумм, если он существует, будем обозначать буквой S .

Определение. Ряд называется сходящимся (ряд сходится ), если сходится последовательность частичных сумм этого ряда. При этом предел S последовательности частичных сумм называется суммой данного ряда , т.е.



. (1.8)

Для сходящегося ряда, имеющего сумму S, можно формально записать равенство:

Ряд, не имеющий суммы (1.8), называют расходящимся . В частности, если , то говорят, что ряд расходится к , и в этом случае используют символическое равенство

.

Замечание. Из равенства (1.6) следует, что любой член ряда можно представить как разность частичных сумм и :

. (1.10)

Изобразим геометрически последовательность частичных сумм. На рис.1.1,а и б ряд сходится, на рис.1.1,в - расходится.


а)

б)

Рис.1.1

Замечание 3. Иногда номер члена ряда начинается с нуля: .

Примеры числовых рядов. Вычисление суммы ряда

Пример 1 º.

1 + 1 + 1 + . . . + 1 + . . .

Здесь , .

Данный ряд расходится Þ 1 + 1 + 1 + . . . + 1 + . . .=+¥.

Пример 2 º.

Как обычно, чередование знаков + и - задается с помощью степени (-1). Здесь последовательность частичных сумм имеет вид:

т.е. значение частичной суммы зависит от чётности номера п :

Таким образом, чётные и нечётные частичные суммы стремятся к двум различным пределам:

чётные к нулю, нечётные - к единице:

Рис.1.2

Следовательно, последовательность не имеет предела, и данный ряд расходится.

Пример 3 º.

1 + 2 + 3 + ... + n + ...

Это арифметическая прогрессия с разностью . Напомним, что название «арифметическая» происходит оттого, что каждый член этой прогрессии, начиная со второго, равен среднему арифметическому соседних с ним членов:

.

В данной прогрессии , а последовательность частичных сумм имеет вид:

Пример 6º.

.

Вывод будет дан ниже. Здесь в знаменателе только нечётные числа.

Пример 7º.


. Вывод будет дан ниже.

Пример 8º.

Вывод будет дан ниже. Сумма ряда равна числу е - основанию натурального логарифма.

Сумму ряда вычислить не всегда легко и даже не всегда возможно. Поэтому в теории рядов чаще решается более простая задача - выяснение, сходится ряд или расходится. Это называется исследованием сходимости ряда.

Пусть задана последовательность чисел R 1 , R 2 , R 3 ,…,R n ,…. Выражение R 1 + R 2 + R 3 +…+ R n +… называют бесконечным рядом , или просто рядом , а числа R 1 , R 2 , R 3 ,… - членами ряда . При этом имеют в виду, что накопление суммы ряда начинается с первых его членов. Сумма S n = называется частичной суммой ряда : при n=1 – первой частичной суммой, при n=2 – второй частичной суммой и так далее.

Называется ряд сходящимся , если последовательность его частичных сумм имеет предел, и расходящимся – в противном случае. Понятие суммы ряда можно расширить , и тогда некоторые расходящиеся ряды также будут обладать суммами. Именно расширенное понимание суммы ряда будет использовано при разработке алгоритмов при следующей постановке задачи: накопление суммы следует выполнять до тех пор, пока очередной член ряда по абсолютной величине больше заданной величины ε.

В общем случае все или часть членов ряда могут быть заданы выражениями, зависящими от номера члена ряда и переменных. Например,

Тогда возникает вопрос, как минимизировать объём вычислений - вычислять значение очередного члена ряда по общей формуле члена ряда (в приведённом примере её представляет выражение под знаком суммы), по рекуррентной формуле (её вывод представлен ниже) или использовать рекуррентные формулы лишь для частей выражения члена ряда (см. ниже).

Вывод рекуррентной формулы для вычисления члена ряда

Пусть требуется найти ряд чисел R 1 , R 2 , R 3 ,…, последовательно вычисляя их по формулам

,
, …,

Для сокращения вычислений в данном случае удобно воспользоваться рекуррентной формулой вида
, позволяющей вычислить значение R N при N>1, зная значение предыдущего члена ряда R N-1 , где
- выражение, которое можно получить после упрощения отношения выражения в формуле (3.1) для N к выражению для N-1:

Таким образом, рекуррентная формула примет вид
.

Из сравнения общей формулы члена ряда (3.1) и рекуррентной (3.2) видно, что рекуррентная формула значительно упрощает вычисления. Применим ее для N=2, 3 и 4 зная, что
:

Способы вычисление значения члена ряда

Для вычисления значения члена ряда, в зависимости от его вида, может оказаться предпочтительнее использование либо общей формулы члена ряда, либо рекуррентной формулы, либо смешанного способа вычисления значения члена ряда , когда для одной или нескольких частей члена ряда используются рекуррентные формулы, и затем их значения подставляются в общую формулу члена ряда. Например, - для ряда проще вычислять значение члена ряда
по его общей формуле
(сравните с
- рекуррентной формулой); - для ряда
лучше воспользоваться рекуррентной формулой
; - для ряда следует применить смешанный способ, вычисляя A N =X 3N по рекуррентной формуле
, N=2, 3,… при A 1 =1 и B N =N! - также по рекуррентной формуле
, N=2, 3,… при B 1 =1, а затем – член ряда
- по общей формуле, которая примет вид
.

Пример 3.2.1 выполнения задания

Вычислить с точностью ε для 0 o  X  45 o

используя рекуррентную формулу для вычисления члена ряда:

,

    точное значение функции cos X,

    абсолютную и относительную ошибки приближенного значения.

program Project1;

{$APPTYPE CONSOLE}

K=Pi/180; //Коэффициент для перевода из градусов в радианы

Eps: Extended =1E-8;

X: Extended =15;

R, S, Y, D: Extended;

{$IFNDEF DBG} //Операторы, не используемые при отладке

Write("Введите требуемую точность: ");

Write("Введите значение угла в градусах: ");

D:=Sqr(K*X); //Перевод X в радианы и возведение в квадрат

//Задание начальных значений переменным

//Цикл для вычисления членов ряда и накопления их суммы.

//Выполнять, пока модуль очередного члена ряда больше Eps.

while Abs(R)>Eps do

if N<10 then //Вывод, используемый при отладке

WriteLn("N=", N, " R=", R:14:11, " S=", S:14:11);

//Вывод результатов вычислений:

WriteLn(N:14," = Число шагов, за которое достигнута",

"заданная точность");

WriteLn(S:14:11," = Приближенное значение функции");

WriteLn(Cos(K*X):14:11," = Точное значение функции");

WriteLn(Abs(Cos(K*X)-S):14:11," = Абсолютная ошибка");

WriteLn(Abs((Cos(K*X)-S)/Cos(K*X)):14:11,

" = Относительная ошибка");

Поскольку точное значение суммы ряда удается вычислить далеко не всегда (такие задачи были нами рассмотрены), возникает проблема приближенного вычисления суммы ряда с заданной точностью.

Напомним, что -ый остаток рядаполучается из исходного рядаотбрасыванием первыхслагаемых:

Тогда, поскольку для сходящегося ряда
,

остаток сходящегося ряда равен разности между суммой ряда и -ой частичной суммой:

,

и для достаточно больших имеем приближенное равенство

.

Из определения остатка ряда следует, что абсолютная погрешность при замене точного неизвестного значения суммы его частичной суммойравна модулю остатка ряда:

.

Таким образом, если требуется вычислить сумму ряда с заданной точностью , то нужно оставить сумму такого числаслагаемых, чтобы для отброшенного остатка ряда выполнялось неравенство:

.

Метод приближенного вычисления суммы выбирается в зависимости от вида ряда:

если ряд положительный и может быть исследован на сходимость по интегральному признаку (удовлетворяет условиям соответствующей теоремы), то для оценки суммы используем формулу

;

если это ряд Лейбница, то применяем оценку:

.

В других задачах можно использовать формулу суммы бесконечно убывающей геометрической прогрессии.

Задача №1. Сколько нужно взять слагаемых ряда
, чтобы получить его сумму с точностью 0,01.

Решение. Прежде всего отметим, что данный ряд сходится. Рассмотрим-ый остаток ряда, который и является погрешностью вычислений суммы ряда:

Оценим этот ряд с помощью бесконечно убывающей геометрической прогрессии. Для этого заменим в каждом слагаемом множитель на, при этом каждое слагаемое увеличится:

После вынесения общего множителя за скобку, в скобке остался ряд, составленный из членов бесконечно убывающей геометрической прогрессии, сумму которого мы и вычислили по формуле

.

Заданная точность будет достигнута, если будет удовлетворять условию

.

Решим неравенство, учитывая, что - целое.

При
имеем

.

При
имеем

.

В силу монотонности функции
, неравенство
будет выполняться для всех
.

Следовательно, если вместо точного значения суммы мы возьмем первые пять (или более) слагаемых, то погрешность вычислений не превысит 0,01.

Ответ:
.

Задача №2. Оценить ошибку, получаемую при замене суммы ряда
суммой первых 100 слагаемых.

Решение. Заметим, что данный ряд является сходящимся и знакопеременным. Оценивать будем ряд
, состоящий из модулей исходного ряда, что сразу увеличивает погрешность вычислений. Кроме того, нам придется перейти (используя признак сравнения) к большему, более простому сходящемуся ряду:

.

Рассмотрим ряд . Поскольку этот ряд удовлетворяет условиям теоремы – интегрального признака сходимости, то для оценки погрешности вычисления суммы используем соответствующую формулу:

.

Вычислим несобственный интеграл:

погрешность вычислений можно оценить по формуле

,

по условию
, тогда.

Ответ:
.

Задача №3. Оценить ошибку, получаемую при замене суммы ряда
суммой первых 10 слагаемых.

Решение. Подчеркнем еще раз, что задача о приближенном вычислении суммы имеет смысл только для сходящегося ряда, поэтому, прежде всего отметим, что данный ряд сходится. Поскольку исследуемый ряд является знакопеременным со сложным правилом изменения знака, то оценивать придется, как и в предыдущем примере, ряд из модулей данного ряда:

.

Используя тот факт, что
при любом значении аргумента, имеем:

.

Оценим остаток ряда:

.

Мы получили ряд, составленный из членов бесконечно убывающей геометрической прогрессии, в которой

,

его сумма равна:

,

.

Ответ:
.

Задача №4. Вычислить сумму ряда
с точностью 0,01.

Решение. Данный ряд является рядом Лейбница. Для оценки погрешности верна формула:

,

другими словами, погрешность вычислений меньше модуля первого отброшенного слагаемого. Подберем номер так, чтобы

.

При
имеем

.

При
имеем

.

Погрешность
, если в качестве значения суммы возьмем сумму первых четырех слагаемых:

Ответ:
.

Задача суммирования множества слагаемых решается в теории рядов.

где u 1, u 2, u 3 …., u n …–члены бесконечной числовой последовательности, называется числовым рядом .

Числа u 1, u 2, u 3 …., u n … называют членами ряда , а u n – общий член ряда.

Сумма конечного числа n первых членов ряда называется n–й частичной суммой ряда.

S n = u 1 + u 2 +… + u n ,

т.е. S 1 = u 1 ; S 2 = u 1 + u 2

S n = u 1 + u 2 +…+ u n

Ряд называется сходящимся, если существует конечный предел частичной суммы S n при n , то есть

Число S называется суммой ряда.

В противном случае:

Тогда ряд называется расходящимся.

Эталонные ряды.

1. Геометрический ряд (геометрическая прогрессия)

Пример.

2. Гармонический ряд.

3. Обобщенный гармонический ряд.

Пример.

.

Признаки сходимости знакоположительных рядов

Теорема 1. Необходимый признак сходимости.

C помощью этого признака можно установить расходимость ряда.

Пример.

Достаточные признаки

Теорема 1.Признак сравнения рядов.

Пусть даны два знакоположительных ряда:

Причем тогда, если ряд (2) сходится, то сходится и ряд (1).

Если ряд (1) расходится, то расходится и ряд (2).

Пример. Исследовать ряд на сходимость:

Сравним этот ряд с геометрическим рядом:

Следовательно, по признаку сравнения искомый ряд сходится.

Теорема 2. Признак Даламбера.

Пример. Исследовать на сходимость ряд:

по признаку Даламберу ряд сходится.

Теорема 3.Радикальный признак Коши.

3) при вопрос о сходимости остается открытым.

Пример: исследовать на сходимость числовой ряд:

Решение:

Следовательно, ряд сходится по Коши.

Теорема 4. Интегральный признак Коши.

Пусть члены ряда

положительны и не возрастают, то есть и являются значениями непрерывной невозрастающей функцииf (x ) при x = 1, 2, …, n .

Тогда для сходимости ряда необходимо и достаточно, чтобы сходился несобственный интеграл:

Пример.

Решение:

Следовательно, ряд расходится, так как расходится несобственный интеграл.

Знакопеременные ряды. Понятие абсолютной и условной сходимости знакопеременого ряда.

Ряд называется знакопеременным , если любой его член может быть, как положительным, так и отрицательным.

Рассмотрим знакочередующиеся ряды:

Теорема 1. Признак Лейбница (достаточный признак).

Если у знакочередующегося ряда

члены убывают по абсолютной величине, то есть и

то ряд сходится, и его сумма не превосходит первого члена, то есть S .

Пример.

Решение:

Применим признак Лейбница:

.

Следовательно, ряд сходится по Лейбницу.

Теорема 2. Достаточный признак сходимости знакопеременного ряда.

Если для знакопеременного ряда сходится ряд, составленный из абсолютных величин его членов , то данный знакопеременный ряд сходится.

Пример: исследовать ряд на сходимость:

Решение:

из абсолютных величин членов исходного ряда сходится, как обобщенный гармонический ряд при .

Следовательно, исходный ряд сходится.

Этот признак является достаточным, но не необходимым, то есть существуют знакопеременные ряды, которые сходятся, хотя ряды, составленные из абсолютных величин, расходятся.

Определение 1. абсолютно сходящимся, если сходится ряд, составленный из абсолютных величин его членов.

Определение 2. Знакопеременный ряд называется условно сходящимся, если сам ряд сходится, а ряд, составленный из абсолютных величин его членов, расходится.

Отличие между ними в том, что абсолютно сходящийся ряд сходится из-за того, что его члены быстро убывают, а условно сходящийся ряд сходится из-за того, что положительные и отрицательные члены уничтожают друг друга.

Пример.

Решение:

Применим признак Лейбница:

Следовательно, ряд сходится по Лейбницу. Но ряд составленный из абсолютных величин его членов расходится, как гармонический.

Значит, исходный ряд сходится условно.

Похожие статьи

© 2024 rsrub.ru. О современных технологиях кровли. Строительный портал.