Хром — свойства и применение, суточная норма, противопоказания, пищевые источники хрома. Полезные материалы

Хром (Cr) — элемент с атомным номером 24 и атомной массой 51,996 побочной подгруппы шестой группы четвёртого периода периодической системы химических элементов Д. И. Менделеева. Хром — твёрдый металл голубовато-белого цвета. Обладает высокой химической стойкостью. При комнатной температуре Cr стоек к воде и к воздуху. Этот элемент является одним из важнейших металлов, используемых в промышленном легировании сталей. Соединения хрома имеют яркую окраску различных цветов, за что, собственно, он и получил свое название. Ведь в переводе с греческого «хром» означает «краска».

Известно 24 изотопа хрома с 42Cr по 66Cr. Стабильные природные изотопы 50Cr (4,31 %), 52Cr (87,76 %), 53Cr (9,55 %) и 54Cr (2,38 %). Из шести искусственных радиоактивных изотопов наиболее важен 51Cr с периодом полураспада 27,8 суток. Он применяется, как изотопный индикатор.

В отличие от металлов древности (золото, серебро, медь, железо, олово и свинец) хром имеет своего «первооткрывателя». В 1766 году в окрестностях Екатеринбурга был найден минерал, который получил название «сибирский красный свинец» — PbCrO4. В 1797 году Л. Н. Вокленом в минерале крокоите — природном хромате свинца, был обнаружен элемент № 24. Примерно в то же время (1798 год) независимо от Воклена хром был открыт немецкими учеными М. Г. Клапротом и Ловицем в образце тяжелого черного минерала (это был хромит FeCr2O4), найденного на Урале. Позднее в 1799 Ф. Тассерт обнаружил новый металл в том же минерале, найденном на юго-востоке Франции. Считается, что именно Тассерту впервые удалось получить относительно чистый металлический хром.

Металлический хром используют для хромирования, а также в качестве одного из важнейших компонентов легированных сталей (в частности нержавеющих). Кроме того, хром нашел применение в ряде других сплавов (кислотоупорных и жаропрочных сталях). Ведь введение этого металла в сталь повышает ее устойчивость против коррозии как в водных средах при обычных температурах, так и в газах при повышенных температурах. Хромистым сталям присуща повышенная твердость. Хром применяют в термохромировании — процесс, при котором защитное действие Cr обусловлено образованием на поверхности стали тонкой, но прочной оксидной пленки, препятствующей взаимодействию металла с окружающей средой.

Широкое применение нашли и соединения хрома, так хромиты успешно используются в огнеупорной промышленности: магнезитохромитовым кирпичом футеруют мартеновские печи и другое металлургическое оборудование.

Хром - один из биогенных элементов, которые постоянно входят в состав тканей растений и животных. Растения содержат хром в листьях, где он присутствует в виде низкомолекулярного комплекса, не связанного с субклеточными структурами. До сих пор ученые не смогли доказать необходимость этого элемента для растений. Однако у животных Cr участвует в обмене липидов, белков (входит в состав фермента трипсина), углеводов (структурный компонент глюкозоустойчивого фактора). Известно, что в биохимических процессах участвует исключительно трехвалентный хром. Как и большинство других важных биогенных элементов, хром проникает в организм животного или человека посредством пищи. Понижение этого микроэлемента в организме приводит к замедлению роста, резкому увеличению уровня холестерина в крови и снижению чувствительности периферийных тканей к инсулину.

В тоже время в чистом виде хром весьма токсичен — металлическая пыль Cr раздражает ткани легких, соединения хрома (III) вызывают дерматиты. Соединения хрома (VI) приводят к разным заболеваниям человека, в том числе и онкологическим.

Биологические свойства

Хром - важный биогенный элемент, непременно входящий в состав тканей растений, животных и человека. Среднее содержание этого элемента в растениях – 0,0005 %, причем практически весь он накапливается в корнях (92-95 %), остальная доля содержится в листьях. Высшие растения не переносят концентрации этого металла выше 3∙10-4 моль/л. У животных содержание хрома составляет от десятитысячных до десятимиллионных долей процента. Зато в планктоне коэффициент накопления хрома поразителен — 10 000-26 000. Во взрослом человеческом организме содержание Cr колеблется от 6 до 12 мг. Причем достаточно точно физиологическая потребность в хроме для человека не установлена. Она во многом зависит от рациона – при употреблении пищи с высоким содержанием сахара, потребность организма в хроме возрастает. Принято считать, что человеку требуется в сутки примерно 20–300 мкг этого элемента. Как и другие биогенные элементы, хром способен накапливаться в тканях организма, особенно в волосах. Именно в них содержание хрома указывает на степень обеспеченности организма этим металлом. К сожалению, с возрастом «запасы» хрома в тканях истощаются, исключением являются легкие.

Хром участвует в обмене липидов, белков (присутствует в составе фермента трипсина), углеводов (является структурным компонентом глюкозоустойчивого фактора). Этот фактор обеспечивает взаимодействие клеточных рецепторов с инсулином, уменьшая, тем самым, потребность в нем организма. Фактора толерантности к глюкозе (GTF) усиливает действие инсулина во всех метаболических процессах с его участием. Кроме того, хром принимает участие в регуляции обмена холестерина и является активатором некоторых ферментов.

Основной источник поступления хрома в организм животных и человека - пища. Ученые установили, что в растительной пище концентрация хрома значительно ниже, чем в животной. Наиболее богаты хромом пивные дрожжи, мясо, печень, бобовые и цельное необработанное зерно. Снижение содержания этого металла в пище и крови приводит к уменьшению скорости роста, увеличению холестерина в крови, снижению чувствительности периферийных тканей к инсулину (диабетоподобное состояние). Кроме того, возрастает риск развития атеросклероза и нарушения высшей нервной деятельности.

Однако уже при концентрациях в доли миллиграмма на кубический метр в атмосфере все соединения хрома оказывают токсическое действие на организм. Отравления хромом и его соединениями часты при их производстве, в машиностроении, металлургии, в текстильной промышленности. Степень ядовитости хрома зависит от химической структуры его соединений - дихроматы токсичнее хроматов, соединения Cr+6 токсичнее соединений Cr+2 и Cr+3. Признаки отравления проявляются ощущением сухости и болью в носовой полости, острым першением в горле, затруднением дыхания, кашлем и подобными признаками. При небольшом избытке паров или пыли хрома признаки отравления проходят вскоре после прекращения работы в цеху. При длительном постоянном контакте с соединениями хрома появляются признаки хронического отравления - слабость, постоянные головные боли, потеря в весе, диспепсия. Начинаются нарушения в работе желудочно-кишечного тракта, поджелудочной железы, печени. Развиваются бронхит, бронхиальная астма, пневмосклероз. Появляются кожные заболевания - дерматиты, экземы. Кроме того, соединения хрома - опасные канцерогены, способные накапливаться в тканях организма, вызывая раковые заболевания.

Профилактикой отравлений являются периодические медицинские осмотры персонала, работающего с хромом и его соединениями; установка вентиляции, средств пылеподавления и пылеулавливания; использование рабочими средств индивидуальной защиты (респираторы, перчатки).

Корень «хром» в своем понятии «цвет», «краска» входит в состав многих слов, используемых в самых разнообразных областях: науке, технике и даже музыке. Так многие названия фотопленок содержат этот корень: «ортохром», «панхром», «изопанхром» и другие. Слово «хромосома» состоит из двух греческих слов: «хромо» и «сома». Дословно это можно перевести, как «окрашенное тело» или «тело, которое окрашивается». Структурный элемент хромосомы, формирующийся в интерфазе ядра клетки в результате удвоения хромосом, называется «хроматида». «Хроматин» - вещество хромасом, находящееся в ядрах растительных и животных клеток, которое интенсивно окрашивается ядерными красителями. «Хроматофоры» - пигментные клетки у животных и человека. В музыке используется понятие «хроматическая гамма». «Хромка» - один из видов русской гармони. В оптике существуют понятия «хроматическая абберация» и «хроматическая поляризация». «Хроматография» - физико-химический метод разделения и анализа смесей. «Хромоскоп» - прибор для получения цветного изображения путем оптического совмещения двух или трех цветоотделенных фотографических изображений, освещаемых через специально подобранные различно окрашенные светофильтры.

Наиболее ядовитым является оксид хрома (VI) CrO3, он относится к I классу опасности. Смертельная доза для человека (перорально) 0,6 г. Этиловый спирт при соприкосновении со свежеприготовленным CrO3 воспламеняется!

Самая распространенная марка нержавеющей стали содержит 18 % Cr, 8 % Ni, около 0,1 % C. Она великолепно противостоит коррозии и окислению, сохраняют прочность при высоких температурах. Именно из такой стали изготовлены листы, использовавшиеся в строительстве скульптурной группы В.И. Мухиной «Рабочий и колхозница».

Феррохром, используемый в металлургической промышленности при производстве хромистых сталей, в конце IXX века был очень низкого качества. Это связано с низким содержанием в нем хрома — всего 7-8 %. Тогда он именовался «тасманским чугуном» в виду того, что исходная железо-хромовая руда ввозилась из Тасмании.

Ранее упоминалось, что хромовые квасцы используются при дублении кож. Благодаря этому появилось понятие «хромовые» сапоги. Кожа, дубленая соединениями хрома приобретает блеск, лоск и прочность.

Во многих лабораториях используют «хромовую смесь» - смесь насыщенного раствора бихромата калия с концентрированной серной кислотой. Она используется в обезжиривании поверхностей стеклянной и стальной лабораторной посуды. Она окисляет жир и удаляет его остатки. Только обращаться с этой смесью необходимо с осторожностью, ведь это смесь сильной кислоты и сильного окислителя!

В наше время древесина по-прежнему используется, как строительный материал, ведь она недорога и проста в обработке. Но у нее много и отрицательных свойств - подверженность пожарам, грибковым заболеваниям, разрушающим ее. Чтобы избежать всех этих неприятностей дерево пропитывают специальными составами, содержащими хроматы и бихроматы плюс хлорид цинка, сульфат меди, арсенат натрия и некоторые другие вещества. Благодаря таким составам древесина увеличивает свою стойкость к грибкам и бактериям, а также к открытому огню.

Особую нишу хром занял в полиграфии. В 1839 году было установлено, что бумага, пропитанная бихроматом натрия, после освещения ярким светом становится вдруг коричневой. Затем выяснилось, что бихроматные покрытия на бумаге после засвечивания не растворяются в воде, а, будучи смоченными, приобретают синеватый оттенок. Этим свойством воспользовались полиграфисты. Нужный рисунок фотографировали на пластинку с коллоидным покрытием, содержащим бихромат. Засвеченные места при промывке не растворялись, а не засвеченные растворялись, и на пластине оставался рисунок, с которого можно было печатать.

История

История открытия элемента № 24 началась в 1761 году, когда в Березовском руднике (восточное подножье Уральских гор) близ Екатеринбурга был найден необычный красный минерал, который при растирании в пыль давал желтую окраску. Находка принадлежала профессору Петербургского университета Иоганну Готтлобу Леману. Спустя пять лет ученый доставил образцы в город Санкт-Петербург, где провел над ними ряд опытов. В частности он обработал необычные кристаллы соляной кислотой, получив при этом белый осадок, в котором обнаружился свинец. Исходя из полученных результатов, Леман назвал минерал сибирским красным свинцом. Такова история обнаружения крокоита (от греческого «krokos» — шафран) - природного хромата свинца PbCrO4.

Заинтересованный данной находкой Петер Симон Паллас - немецкий естествоиспытатель и путешественник организовал и возглавил экспедицию Петербургской Академии наук в сердце России. В 1770 году экспедиция достигла Урала и посетила Березовский рудник, где были взяты образцы изучаемого минерала. Вот как это описывает сам путешественник: «Этот удивительный красный свинцовый минерал не встречается более ни в одном месторождении. При растирании в порошок становится желтым, и может быть использован в художественной миниатюре». Немецкая предприимчивость преодолела все трудности добычи и доставки крокоита в Европу. Несмотря на то, что эти операции занимали не менее двух лет, вскоре экипажи знатных господ Парижа и Лондона ездили раскрашенные мелко истолченным крокоитом. Коллекции минералогических музеев многих университетов старого света обогатились лучшими образцами этого минерала из русских недр. Однако состав загадочного минерала европейские ученые разгадать никак не могли.

Длилось это на протяжении тридцати лет, пока образец сибирского красного свинца не попал в руки профессору химии Парижской минералогической школы Никола Луи Воклену в 1796 году. Проведя анализ крокоита, ученый не обнаружил в нем ничего кроме оксидов железа, свинца и алюминия. В дальнейшем Воклен обработал крокоит раствором поташа (К2CO3) и вслед за осаждением белого осадка карбоната свинца выделил желтый раствор неизвестной соли. Проведя ряд опытов по обработке минерала солями различных металлов, профессор при помощи соляной кислоты выделил раствор «кислоты красного свинца» - окись хрома и воду (хромовая кислота существует только в разбавленных растворах). Выпарив данный раствор, он получил рубиново-красные кристаллы (хромовый ангидрид). Дальнейший нагрев кристаллов в графитовом тигле в присутствии угля дал множество сросшихся серых игольчатых кристаллов - новый до этого времени неизвестный металл. Очередной ряд опытов показал высокую тугоплавкость полученного элемента и его устойчивость к кислотам. Парижская академия наук незамедлительно засвидетельствовала открытие, ученый по настоянию друзей дал имя новому элементу - хром (от греческого «цвет», «окраска») ввиду разнообразия оттенков образуемых им соединений. В дальнейших своих работах Воклен уверенно заявил, что изумрудная окраска некоторых драгоценных камней, а также природных силикатов бериллия и алюминия объясняется примесью в них соединений хрома. Примером может послужить смарагд, который является окрашенным в зеленый цвет берилл, в котором алюминий частично замещен хромом.

Понятно, что Воклен получил не чистый металл, скорее всего его карбиды, что подтверждается игольчатой формой светло-серых кристаллов. Чистый металлический хром позднее был получен Ф. Тассертом, предположительно в 1800 году.

Также, независимо от Воклена, хром обнаружили Клапрот и Ловиц в 1798 году.

Нахождение в природе

В земных недрах хром — довольно распространенный элемент, несмотря на то, что в свободном виде он не встречается. Его кларк (среднее содержание в земной коре) составляет 8,3.10-3 % или 83 г/т. Однако его распределение по породам неравномерно. Этот элемент в основном характерен для мантии Земли, дело в том, что ультраосновные породы (перидотиты), которые, предположительно близки по составу к мантии нашей планеты, наиболее богаты хромом: 2 10-1 % или 2 кг/т. В таких породах Cr образует массивные и вкрапленные руды, с ними связано образование крупнейших месторождений данного элемента. Высоко содержание хрома и в основных породах (базальтах и др.) 2 10-2 % или 200 г/т. Гораздо меньше Cr в кислых породах: 2,5 10-3 %, осадочных (песчаники) - 3,5 10-3 %, глинистые сланцы также содержат хром - 9 10-3 %.

Можно заключить, что хром является типичным литофильным элементом и почти весь заключен в минералах глубокого залегания в недрах Земли.

Различают три основных минерала хрома: магнохромит (Mn, Fe)Cr2O4, хромпикотит (Mg, Fe)(Cr, Al)2O4 и алюмохромит (Fe, Mg)(Cr, Al)2O4. Эти минералы имеют единое название - хромовая шпинель и общую формулу (Mg, Fe)О (Сr, Al, Fе)2O3. По внешнему виду они неразличимы и их неточно называют «хромиты». Состав их изменчив. Содержание важнейших компонентов колеблется (весовые %): Cr2O3 от 10,5 до 62,0; Al2O3 от 4 до 34,0; Fe2O3 от 1,0 до 18,0; FeO от 7,0 до 24,0; MgO от 10,5 до 33,0; SiO2 от 0,4 до 27,0; примеси TiO2 до 2; V2O5 до 0,2; ZnO до 5; MnO до 1. В некоторых хромовых рудах содержится 0,1-0,2 г\т элементов группы платины и до 0,2 г\т золота.

Помимо различных хромитов, хром входит в состав ряда других минералов - хромвезувиана, хромового хлорита, хромтурмалина, хромовой слюды (фуксита), хромового граната (уваровита) и др., которые нередко сопровождают руды, но сами промышленного значения не имеют. Хром - относительно слабый водный мигрант. В экзогенных условиях хром, как и железо, мигрирует в виде взвесей и может осаждаться в глинах. Наиболее подвижной формой являются хроматы.

Практическое значение имеет, пожалуй, только хромит FeCr2O4, относящийся к шпинелям - изоморфным минералам кубической системы с общей формулой МО Ме2О3, где М - ион двухвалентного металла, а Ме - ион трехвалентного металла. Помимо шпинелидов, хром встречается во многих значительно менее распространенных минералах, например, меланохроите 3PbO 2Cr2O3, вокелените 2(Pb,Cu)CrO4(Pb,Cu)3(PO4)2, тарапакаите K2CrO4, дитцеите CaIO3 CaCrO4 и других.

Хромиты обычно встречаются в виде зернистых масс черного цвета, реже - в виде октаэдрических кристаллов, имеют металлический блеск, залегают в виде сплошных массивов.

На конец XX века запасы хрома (выявленные) в почти полусотне стран мира, имеющих залежи этого металла, составляли 1674 млн. т. Лидирующую позицию занимает Южно Африканская Республика – 1050 млн. т, где основной вклад вносит Бушвелдский комплекс (около 1000 млн. т). Второе место по хромовым ресурсам принадлежит Казахстану, где в Актюбинской области (Кемпирсайский массив) добывают руду очень высокого качества. Другие страны также имеют запасы этого элемента. Турция (в Гулемане), Филлипины на острове Лусон, Финляндия (Кеми), Индия (Сукинда) и др.

Наша страна имеет свои разрабатываемые месторождения хрома – на Урале (Донское, Сарановское, Халиловское, Алапаевское и многие другие). Причем в начале XIX века именно уральские месторождения являлись основными источниками хромовых руд. Лишь в 1827 американец Исаак Тисон обнаружил крупное месторождение хромовой руды на границе Мериленда и Пенсильвании, перехватив монополию добычи на многие годы. В 1848 залежи хромита высокого качества были найдены в Турции, неподалеку от Бурсы, причем вскоре (после истощения Пенсильванского месторождения) именно эта страна перехватила роль монополиста. Это продолжалось до 1906 года, пока не были обнаружены богатые залежи хромитов в ЮАР и Индии.

Применение

Общий объем потребления чистого металлического хрома на сегодняшний день составляет примерно 15 миллионов тонн. На долю производства электролитического хрома — самого чистого - приходится 5 миллионов тонн, что составляет третью часть от общего потребления.

Хром широко используется для легирования сталей и сплавов, придавая им корозионостойкость и жаростойкость. На изготовление таких «суперсплавов» расходуется более 40 % получаемого чистого металла. Наиболее известны сплавы сопротивления - нихромы с содержанием Cr 15-20 %, жаропрочные сплавы - 13-60 % Cr, нержавеющие - 18 % Cr и шарикоподшипниковые стали 1 % Cr. Добавка хрома к обычным сталям улучшает их физические свойства и делает металл более восприимчивым к термической обработке.

Металлический хром используется для хромирования - нанесения на поверхность стальных сплавов тонкого слоя хрома с целью повышения коррозионной стойкости этих сплавов. Хромированное покрытие отлично противостоит воздействию влажного атмосферного воздуха, соленого морского воздуха, воды, азотной и большинства органических кислот. Такие покрытия бывают двух назначений: защитные и декоративные. Толщина защитных покрытий составляет порядка 0,1 мм, они наносятся непосредственно на изделие и придают ему повышенную износостойкость. Декоративные покрытия имеют эстетическое значение, наносятся на слой другого металла (меди или никеля), который собственно выполняет защитную функцию. Толщина такого покрытия всего 0,0002–0,0005 мм.

Соединения хрома также активно используются в различных областях.

Основная хромовая руда - хромит FeCr2O4 используется в производстве огнеупоров. Магнезитохромитовые кирпичи химически пассивны и термостойки, они выдерживают резкие многократные изменения температур, поэтому их используют в конструкциях сводов мартеновских печей и рабочем пространстве других металлургических устройств и сооружений.

Твердость кристаллов оксида хрома (III) - Cr2O3 соизмерима с твердостью корунда, что обеспечило его применение в составах шлифовальных и притирочных паст, используемых в машиностроении, ювелирной, оптической и часовой промышленности. Его также применяют в качестве катализатора гидрирования и дегидрирования некоторых органических соединений. Cr2O3 используется в живописи в виде зеленого пигмента и для окраски стекла.

Хромат калия - K2CrO4 применяется при дублении кож, в качестве протравы в текстильной промышленности, в производстве красителей, при отбеливании воска.

Дихромат калия (хромпик) - K2Cr2O7 также используется при дублении кож, протраве при окрашивании тканей, является ингибитором коррозии металлов и сплавов. Используется при изготовлении спичек и в лабораторных целях.

Хлорид хрома (II) CrCl2 - очень сильный восстановитель, легко окисляется даже кислородом воздуха, что используется в газовом анализе для количественного поглощения О2. Кроме того, ограниченно используется при получении хрома электролизом расплавов солей и хроматометрии.

Хромокалиевые квасцы K2SO4.Cr2(SO4)3 24H2O используются в основном в текстильной промышленности - при дублении кожи.

Безводный хлорид хрома CrCl3 применяется для нанесения покрытий хрома на поверхность сталей химическим осаждением из газовой фазы, является составной частью некоторых катализаторов. Гидраты CrCl3 - протрава при крашении тканей.

Из хромата свинца РbCrО4 изготовляют различные красители.

Раствором бихромата натрия очищают и травят поверхность стальной проволоки перед цинкованием, а также осветляют латунь. Из бихромата натрия получают хромовую кислоту, которая используется в качестве электролита при хромировании металлических деталей.

Производство

В природе хром встречается в основном в виде хромистого железняка FeO∙Cr2O3, при его восстановлении углем получается сплав хрома с железом — феррохром, который непосредственно используется в металлургической промышленности при производстве хромистых сталей. Содержание хрома в таком составе доходит до 80 % (по массе).

Восстановление оксида хрома (III) углем предназначено для получения высокоуглеродистого хрома, необходимого для производства специальных сплавов. Процесс проводится в электродуговой печи.

Для получения чистого хрома предварительно получают оксид хрома (III), а затем восстанавливают его алюминотермическим способом. При этом предварительно смесь из порошкового или в виде стружки алюминия (Al) и шихту оксида хрома (Cr2O3) прогревают до температуры 500-600° С. Затем, возбуждают восстановление смесью перекиси бария с порошком алюминия, либо запалом части шихты с последующим добавлением оставшейся части. В этом процессе важно, чтобы образовавшейся тепловой энергии хватило на плавление хрома и его отделения от шлака.

Cr2O3 + 2Al = 2Cr + 2Al2O3

Получаемый таким способом хром содержит некое количество примесей: железа 0,25-0,40 %, серы 0,02 %, углерода 0,015–0,02 %. Содержание чистого вещества составляет 99,1–99,4 %. Такой хром хрупок и легко перемалывается в порошок.

Реальность такого метода была доказана и продемонстрирована еще в 1859 году Фридрихом Вёлером. В промышленных масштабах же алюмотермическое восстановление хрома стало возможно только после того, как стал доступным метод получения дешевого алюминия. Гольдшмидт первым разработал безопасный способ регулирования сильно экзотермического (следовательно - взрывоопасного) процесса восстановления.

При необходимости получения высокочистого хрома в промышленности используют электролитические методы. Электролизу подвергают смеси хромового ангидрида, хромоаммонийных квасцов или сульфата хрома с разбавленной серной кислотой. Оседающий в процессе электролиза на алюминиевых или нержавеющих катодах хром содержит растворенные газы в качестве примесей. Чистоты 99,90–99,995 % удается добиться с помощью высокотемпературной (1500-1700° С) очистки в потоке водорода и вакуумной дегазации. Передовые методики рафинирования электролитического хрома удаляют серу, азот, кислород и водород из «сырого» продукта.

Кроме того, возможно получение металлического Cr электролизом расплавов СrCl3 или CrF3 в смеси с фторидами калия, кальция, натрия при температуре 900° C в среде аргона.

Возможность электролитического способа получения чистого хрома доказал Бунзен в 1854 году, подвергая электролизу водный раствор хлорида хрома.

В промышленности используется и силикотермический способ получения чистого хрома. При этом хром из окиси восстанавливается кремнием:

2Cr2O3 + 3Si + 3CaO = 4Cr + 3CaSiO3

Силикотермически хром выплавляют в дуговых печах. Добавка негашеной извести позволяет перевести тугоплавкий диоксид кремния в легкоплавкий шлак силикат кальция. Чистота силикотермического хрома примерно такая же, как и алюминотермического, однако, естественно, содержание в нем кремния несколько выше, а алюминия несколько ниже.

Еще Cr можно получать восстановлением Cr2O3 водородом при 1500° С, восстановлением безводного CrCl3 водородом, щелочными или щелочноземельными металлами, магнием и цинком.

Для получения хрома пытались применить и другие восстановители - углерод, водород, магний. Однако эти способы не получили широкого распространения.

В процессе Ван Аркеля – Кучмана – Де Бура применяется разложение иодида хрома (III) на нагретой до 1100° С проволоке с осаждением на ней чистого металла.

Физические свойства

Хром — твердый, весьма тяжелый, тугоплавкий, ковкий металл серо-стального цвета. Чистый хром довольно пластичен, кристаллизуется в объемно-центрированной решетке, а = 2,885Å (при температуре 20° С). При температуре около 1830° С велика вероятность преобразования в модификацию с гранецентрированной решеткой, а = 3,69Å. Атомный радиус 1,27 Å; ионные радиусы Cr2+ 0,83Å, Cr3+ 0,64Å, Cr6+ 0,52 Å.

Температура плавления хрома напрямую зависит от его чистоты. Поэтому определение этого показателя для чистого хрома весьма сложная задача - ведь даже небольшое содержание примесей азота или кислорода могут существенно изменить значение температуры плавления. Множество исследователей на протяжении не одного десятилетия занимались этим вопросом и получали далекие друг от друга результаты: от 1513 до 1920° C. Ранее было принято считать, что этот металл плавится при температуре 1890° C, но современные исследования указывают температуру в 1907° С, хром кипит при температуре свыше 2500° C - данные также разнятся: от 2199° C до 2671° С. Плотность хрома меньше, чем у железа; она составляет 7,19 г\см3 (при температуре 200° C).

Хрому свойственны все основные характеристики металлов - он хорошо проводит теплоту, его сопротивление электрическому току очень мало, как и большинство металлов, хром имеет характерный блеск. Кроме того, этот элемент имеет одну очень интересную особенность: дело в том, что при температуре 37° C его поведение не поддается объяснению - происходит резкое изменение многих физических свойств, это изменение имеет скачкообразный характер. Хром, как заболевший человек при температуре 37° C начинает капризничать: внутреннее трение хрома достигает максимума, модуль упругости падает до минимальных значений. Скачет значение электропроводности, постоянно изменяется термоэлектродвижущая сила, коэффициент линейного расширения. Данный феномен ученые пока объяснить не могут.

Удельная теплоемкость хрома 0,461 кДж/(кг.К) или 0,11 кал/(г °С) (при температуре 25°С); коэффициент теплопроводности 67 Вт/(м К) или 0,16 кал/(см сек °С) (при температуре 20 °С). Термический коэффициент линейного расширения 8,24 10-6 (при 20 °С). Хром при температуре 20 °С имеет удельное электросопротивление 0,414 мком м, а его термический коэффициент электросопротивления в интервале 20-600° С составляет 3,01 10-3.

Известно, что хром очень чувствителен к примесям – самые малые доли других элементов (кислород, азот, углерод) способны сделать хром очень хрупким. Получить же хром без этих примесей крайне трудно. По этой причине данный металл в конструкционных целях не используется. Зато в металлургии он активно применяется, как легирующий материал, так как его добавка в сплав делает сталь твердой и износостойкой, ведь хром самый твердый из всех металлов - он подобно алмазу режет стекло! Твердость высокочистого хрома по Бринеллю 7-9 Мн/м2 (70-90 кгс/см2). Хромом легируют пружинные, рессорные, инструментальные, штамповые и шарикоподшипниковые стали. В них (кроме шарикоподшипниковых сталей) хром присутствует вместе с марганцем, молибденом, никелем, ванадием. Добавка хрома к обычным сталям (до 5 % Сr) улучшает их физические свойства и делает металл более восприимчивым к термической обработке.

Хром антиферромагнитен, удельная магнитная восприимчивость 3,6 10-6. Удельное электрическое сопротивление 12,710-8 Ом. Температурный коэффициент линейного расширения хрома 6,210-6. Теплота парообразования этого металла составляет 344,4 кДж/Моль.

Хром устойчив к коррозии на воздухе и в воде.

Химические свойства

Химически хром довольно инертен, это объясняется наличием на его поверхности прочной тонкой пленки оксида. На воздухе Cr не окисляется, даже в присутствии влаги. При нагреве окисление протекает исключительно на поверхности металла. При 1200° C пленка разрушается, и окисление протекает гораздо быстрее. При 2000° C хром сгорает с образованием зелёного оксида хрома (III) Cr2O3, обладающего амфотерными свойствами. Сплавляя Cr2O3 со щелочами, получают хромиты:

Cr2O3 + 2NaOH = 2NaCrO2 + H2O

Непрокаленный оксид хрома (III) легко растворяется в щелочных растворах и в кислотах:

Cr2O3 + 6HCl = 2CrCl3 + 3Н2О

В соединениях хром в основном проявляет степени окисления Cr+2, Cr+3, Cr+6. Наиболее устойчивыми являются Cr+3 и Cr+6. Так же существуют некоторые соединения, где хром имеет степени окисления Cr+1, Cr+4, Cr+5. Соединения хрома весьма разнообразны по цвету: белые, синие, зеленые, красные, фиолетовые, черные и многие другие.

Хром легко реагирует с разбавленными растворами соляной и серной кислот с образованием хлорида и сульфата хрома и выделением водорода:

Cr + 2HCl = CrCl2 + H2

Царская водка и азотная кислота пассивируют хром. Причем пассивированный азотной кислотой хром не растворяется в разбавленных серной и соляной кислотах даже при длительном кипячении в их растворах, но в какой-то момент растворение все-таки происходит, сопровождаемое бурным вспениванием от выделившегося водорода. Этот процесс объясняется тем, что хром из пассивного состояния переходит в активное, в котором металл не защищен защитной пленкой. Причем, если в процессе растворения вновь добавить азотной кислоты, то реакция прекратится, так как хром вновь пассивируется.

При обычных условиях хром взаимодействует с фтором, образуя CrF3. При температурах выше 600° C происходит взаимодействие с водяными парами, результатом такого взаимодействия является оксид хрома (III) Сr2О3:

4Cr + 3O2 = 2Cr2O3

Cr2O3, представляет собой зеленые микрокристаллы с плотностью 5220 кг/м3 и высокой температурой плавления (2437° С). Оксид хрома (III) проявляет амфотерные свойства, но весьма инертен, его трудно растворить в водных кислотах и щелочах. Оксид хрома(III) довольно токсичен. Попадая на кожу, он способен вызывать экзему и другие кожные заболевания. Поэтому, при работе с оксидом хрома (III) обязательно необходимо использовать средства индивидуальной защиты.

Помимо окиси, известны другие соединения с кислородом: CrO, CrO3, получаемые косвенным путем. Наибольшую опасность представляет вдыхаемый аэрозоль оксида, вызывающий тяжелые заболевания верхних дыхательных путей и легких.

Хром образует большое число солей с кислородосодержащими компонентами.

Хром

ХРОМ -а; м. [от греч. chrōma - цвет, краска]

1. Химический элемент (Сr), твёрдый металл серо-стального цвета (используется при изготовлении твёрдых сплавов и для покрытия металлических изделий).

2. Мягкая тонкая кожа, выдубленная солями этого металла. Сапоги из хрома.

3. Род жёлтой краски, получаемой из хроматов.

Хро́мовый (см.).

хром

(лат. Chromium), химический элемент VI группы периодической системы. Назван от греч. chrōma - цвет, краска (из-за яркой окраски соединений). Голубовато-серебристый металл; плотность 7,19 г/см 3 , t пл 1890°C. На воздухе не окисляется. Главные минералы - хромшпинелиды. Хром - обязательный компонент нержавеющих, кислотоупорных, жаростойких сталей и большого числа других сплавов (нихромы, хромали, стеллит). Применяется для хромирования. Соединения хрома - окислители, неорганические пигменты, дубители.

ХРОМ

ХРОМ (лат. chromium, от греческого хрома - цвет, окраска, для соединений хрома характерна широкая цветовая палитра), Cr (читается «хром»), химический элемент с атомным номером 24, атомная масса 51,9961. Расположен в группе VIB в 4 периоде периодической системы элементов.
Природный хром состоит из смеси четырех стабильных нуклидов: 50 Cr (содержание в смеси 4,35%), 52 Cr (83,79%), 53 Cr (9,50%) и 54 Cr (2,36%). Конфигурация двух внешних электронных слоев 3s 2 р 6 d 5 4s 1 . Степени окисления от 0 до +6 , наиболее характерны +3 (самая устойчивая) и +6 (валентности III и VI).
Радиус нейтрального атома 0,127 нм, радиус ионов (координационное число 6): Cr 2+ 0,073 нм, Cr 3+ 0,0615 нм, Cr 4+ 0,055 нм, Cr 5+ 0,049 нм и Cr 6+ 0,044 нм. Энергии последовательной ионизации 6,766, 16,49, 30,96, 49,1, 69,3 и 90,6 эВ. Сродство к электрону 1,6 эВ. Электроотрицательность по Полингу (см. ПОЛИНГ Лайнус) 1,66.
История открытия
В 1766 в окрестностях Екатеринбурга был обнаружен минерал, который получил название «сибирский красный свинец», PbCrO 4 . Современное название - крокоит. В 1797 французский химик Л. Н. Воклен (см. ВОКЛЕН Луи Никола) выделил из него новый тугоплавкий металл (скорее всего Воклен получил карбид хрома).
Нахождение в природе
Содержание в земной коре 0,035 % по массе. В морской воде содержание хрома 2·10 -5 мг/л. В свободном виде хром практически не встречается. Входит в состав более 40 различных минералов (хромит FeCr 2 O 4 , волконскоит, уваровит, вокеленит и др.). Некоторые метеориты содержат сульфидные соединения хрома.
Получение
Промышленным сырьем при производстве хрома и сплавов на его основе служит хромит. Восстановительной плвкой хромита с коксом (восстановителем), железной рудой и другими компонентами получают феррохром с содержанием хрома до 80% (по массе).
Для получения чистого металлического хрома хромит с содой и известняком обжигают в печах:
2Cr 2 O 3 + 2Na 2 CO 3 + 3O 2 = 4Na 2 CrO 4 + 4CO 2
Образующийся хромат натрия Na 2 CrO 4 выщелачивают водой, раствор фильтруют, упаривают и обрабатывают кислотой. При этом хромат Na 2 CrO 4 переходит в дихромат Na 2 Cr 2 O 7:
2Na 2 CrO 4 + H 2 SO 4 = Na 2 Cr 2 O 7 + Na 2 SO 4 + H 2 O
Полученный дихромат восстанавливают серой:
Na 2 Cr 2 O 7 + 3S = Na 2 S + Cr 2 O 3 + 2SO 2
,
Образующийся чистый оксид хрома(III) Cr 2 O 3 подвергают алюминотермии:
Cr 2 O 3 + 2Al = Al 2 O 3 + 2Cr.
Также используют кремний:
2Cr 2 O 3 + 3Si = 3SiO 2 + 4Cr
Для получения хрома высокой чистоты, технический хром электрохимически очищают от примесей.
Физические и химические свойства
В свободном виде - голубовато-белый металл с кубической объемно-центрированной решеткой, а = 0,28845 нм. При температуре 39°C переходит из парамагнитного состояния в антиферромагнитное (точка Нееля). Температура плавления 1890°C, температура кипения 2680°C. Плотность 7,19 кг/дм 3 .
Устойчив на воздухе. При 300°C сгорает с образованием зеленого оксида хрома (III) Cr 2 O 3 , обладающего амфотерными свойствами. Сплавляя Cr 2 O 3 со щелочами получают хромиты:
Cr 2 O 3 + 2NaOH = 2NaCrO 2 + H 2 O
Непрокаленный оксид хрома (III) легко растворяется в щелочных растворах и в кислотах:
Cr 2 O 3 + 6НСl = 2CrСl 3 + 3Н 2 О
При термическом разложении карбонила хрома Cr(OH) 6 получают красный основной оксид хрома(II) CrO. Коричневый или желтый гидроксид Cr(OН) 2 со слабоосновными свойствами осаждается при добавлении щелочей к растворам солей хрома(II).
При осторожном разложении оксида хрома(VI) CrO 3 в гидротермальных условиях получают диоксид хрома(IV) CrO 2 , который является ферромагнетиком и обладает металлической проводимостью.
При взаимодействии концентрированной серной кислоты с растворами дихроматов образуются красные или фиолетово-красные кристаллы оксида хрома(VI) CrO 3 . Типично кислотный оксид, при взаимодействии с водой он образует сильные неустойчивые хромовые кислоты: хромовая H 2 CrO 4 , дихромовая H 2 Cr 2 O 7 и другие.
Известны галогениды, соответствующие разным степеням окисления хрома. Синтезированы дигалогениды хрома CrF 2 , CrCl 2 , CrBr 2 и СrI 2 и тригалогениды CrF 3 , CrCl 3 , CrBr 3 и СrI 3 . Однако, в отличие от аналогичных соединений алюминия и железа, трихлорид CrCl 3 и трибромид CrBr 3 хрома нелетучи.
Среди тетрагалогенидов хрома устойчив CrF 4 , тетрахлорид хрома CrCl 4 существует только в парах. Известен гексафторид хрома CrF 6 .
Получены и охарактеризованы оксигалогениды хрома CrO 2 F 2 и CrO 2 Cl 2 .
Синтезированы соединения хрома с бором (бориды Cr 2 B, CrB, Cr 3 B 4 , CrB 2 , CrB 4 и Cr 5 B 3), с углеродом (карбиды Cr 23 C 6 , Cr 7 C 3 и Cr 3 C 2), c кремнием (силициды Cr 3 Si, Cr 5 Si 3 и CrSi) и азотом (нитриды CrN и Cr 2 N).
В растворах наиболее устойчивы соединения хрома(III). В этой степени окисления хрому соответствуют как катионная форма, так и анионные формы, например, существующий в щелочной среде анион 3- .
При окислении соединений хрома(III) в щелочной среде образуются соединения хрома(VI):
2Na 3 + 3H 2 O 2 = 2Na 2 CrO 4 + 2NaOH + 8H 2 O
Cr (VI) отвечает ряд существующих только в водных растворах кислот: хромовая H 2 CrO 4 , дихромовая H 2 Cr 2 O 7 , трихромовая H 3 Cr 3 O 10 и другие, которые образуют соли - хроматы, дихроматы, трихроматы и т. д.
В зависимости от кислотности среды анионы этих кислот легко превращаются друг в друга. Например, при подкислении желтого раствора хромата калия K 2 CrO 4 образуется оранжевый дихромат калия K 2 Cr 2 O 7:
2K 2 CrO 4 + 2НСl = K 2 Cr 2 O 7 + 2КСl + Н 2 О
Но если к оранжевому раствору K 2 Cr 2 O 7 прилить раствор щелочи, как окраска вновь переходит в желтую т. к. снова образуется хромат калия K 2 CrO 4:
K 2 Cr 2 O 7 + 2КОН = 2K 2 CrO 4 + Н 2 О
При добавлении к желтому раствору, содержащему хромат-ионы, раствора соли бария выпадает желтый осадок хромата бария BаCrO 4:
Bа 2+ + CrO 4 2- = BаCrO 4
Соединения хрома(III)- сильные окислители, например:
K 2 Cr 2 O 7 + 14 НСl = 2CrCl 3 + 2KCl + 3Cl 2 + 7H 2 O
Применение
Использование хрома основано на его жаропрочности, твердости и устойчивости к коррозии. Применяют для получения сплавов: нержавеющей стали, нихрома и др. Большое количество хрома идет на декоративные коррозионно-стойкие покрытия. Соединения хрома - огнеупорные материалы. Оксид хрома (III) - пигмент зеленой краски, также входит в состав абразивных материалов (паст ГОИ). Изменение окраски при восстановлении соединений хрома(VI) применяют для проведения экспресс-анализа на содержание алкоголя в выдыхаемом воздухе.
Катион Cr 3+ входит в состав хромкалиевых KCr(SO 4) 2 ·12H 2 O квасцов, использующихся при выделке кожи.
Физиологическое действие
Хром - один из биогенных элементов, постоянно входит в состав тканей растений и животных. У животных хром участвует в обмене липидов, белков (входит в состав фермента трипсина), углеводов. Снижение содержания хромма в пище и крови приводит к уменьшению скорости роста, увеличению холестерина в крови.
Металлический хром практически нетоксичен, но металлическая пыль хрома раздражает ткани легких. Соединения хрома(III) вызывают дерматиты. Соединения хрома(VI) приводят к разным заболеваниям человека, в том числе и онкологическим. ПДК хрома(VI) в атмосферном воздухе 0,0015 мг/м 3 .


Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "хром" в других словарях:

    хром - хром, а … Русский орфографический словарь

    хром - хром/ … Морфемно-орфографический словарь

    - (от греч. chroma цвет, краска). Металл сероватого цвета, добываемый из хромовой руды. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ХРОМ металл сероватого цвета; в чистом виде х. не употребляется; соединения же с … Словарь иностранных слов русского языка

    ХРОМ - см. ХРОМ (Сг). Соединения хрома встречаются в сточных водах многих промышленных предприятий, производящих хромовые соли, ацетилен, дубильные вещества, анилин, линолеум, бумагу, краски, пестициды, пластмассы и др. В воде встречаются трехвалентные… … Болезни рыб: Справочник

    ХРОМ, а, муж. 1. Химический элемент, твёрдый светло серый блестящий металл. 2. Род жёлтой краски (спец.). | прил. хромистый, ая, ое (к 1 знач.) и хромовый, ая, ое. Хромистая сталь. Хромовая руда. II. ХРОМ, а, муж. Сорт мягкой тонкой кожи. | прил … Толковый словарь Ожегова

    хром - а, м. chrome m. <новолат. chromium <лат. chroma <гр. краска. 1. Химический элемент твердый серебристый металл, употребляемый при изготовлении твердых сплаво и для покрытия металлических изделий. БАС 1. Металл, открытый Вокеленом,… … Исторический словарь галлицизмов русского языка

    ХРОМ - ХРОМ, Chromium (от греч. chroma краска), I симв. Сг, хим. элемент с ат. весом 52,01 (изо! топы 50, 52, 53, 54); порядковое число 24, за! нимает место в четной подгруппе VІ группы j таблицы Менделеева. Соединения X. часто i встречаются в природе … Большая медицинская энциклопедия

    - (лат. Chromium) Cr, химический элемент VI группы Периодической системы Менделеева, атомный номер 24, атомная масса 51,9961. Название от греч. chroma цвет, краска (из за яркой окраски Соединения). Голубовато серебристый металл; плотность 7,19… … Большой Энциклопедический словарь

    ХРОМ 1, а, м. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    ХРОМ 2, а, м. Сорт мягкой тонкой кожи. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

Хром

Историческая справка

Металлический хром получают восстановлением его из оксида с помощью алюминия (алюминотермия):

С этой целью используют хромистый железняк. Вначале его сплавляют с содой в присутствии кислорода, и далее образующий хромат натрия восстанавливают углеродом до оксида хрома:

Свойства хрома и его соединений. Хром - белый, с сероватым оттенком блестящий металл, имеющий большую твердость и упругость. При комнатной температуре стоек к воде и воздуху.

В химическом отношении хром как металл является восстановителем. В зависимости от условий реакции он может проявлять переменную степень окисления; устойчивыми являются состояния +2, +3, +6.

При нормальных условиях хром устойчив к кислороду, взаимодействие с которым протекает лишь при нагревании. В этих же условиях хром реагирует и с хлором, серой, азотом, кремнием. Например:

Обычно на поверхности хрома содержится плотный слой оксида Сг 2 0 3 , защищающий металл от дальнейшего окисления. Такая пассивированная поверхность и является причиной того, что при обычных температурах не происходит взаимодействия хрома с азотной кислотой и царской водкой.

С разбавленными соляной и серной кислотами хром реагирует с выделением водорода и образованием солей Сг(П), которые, быстро окисляясь, переходят в соли Сг(Ш):

Соединения хрома чаще всего имеют следующее пространственное строение:

С кислородом хром образует ряд оксидов, которые в зависимости от степени окисления металла проявляют основные, амфотерные или кислотные свойства.

Оксид хрома(П) СгО обладает основными свойствами. При взаимодействии с НС1 образует СгС1 2 .

Под действием водорода СгО восстанавливается до металлического хрома, при нагревании под действием кислорода воздуха переходит в Сг 2 0 3 .

Оксиду СгО соответствует гидроксид Сг(ОН)., образующийся из СгС1 2:

Сг(ОН) 2 - вещество желтого цвета. Имеет основный характер и в реакциях с кислотами образует соответствующие соли Сг(П).

Ион Сг 2+ является настолько сильным восстановителем, что способен вытеснять водород из воды:

Кислородом воздуха Сг(П) легко окисляется, поэтому раствор СгС1:! , например, можно применять для поглощения кислорода:

Водные растворы соединений Сг(П) имеют голубой цвет.

Оксид хрома(Ш) Сг 2 0 3 относится к амфотерным оксидам.

Его получают прокаливанием оксида хрома(У1), или разложением дихромата аммония, или термическим разложением гидроксида хрома(Ш):

Гидроксид хрома(Ш) Cr(OH) ;j получается при действии щелочей на соли хрома; при этом Сг(ОН) 3 выделяется в виде осадка синевато-серого цвета:

Сг(ОН) 3 обладает амфотерными свойствами. Подобно гидроксиду алюминия Сг(ОН) 3 взаимодействует с кислотами с образованием солей Сг(Ш), а со щелочами - с образованием хромитов:


Мета- или ортохромиты, являющиеся солями соответствующих кислот - НСг0 2 (метахромистая) и Н 3 Сг0 3 (ортохромистая), образуются при сплавлении оксида хрома(Ш) со щелочами или с содой:

Следовательно, Сг(ОН) 3 следует рассматривать как амфотерный гидроксид:

Под действием сильных окислителей в щелочной среде соединения хро- ма(Ш) переходят в соединения хрома(У1) - хроматы:

Для иона Сг 3 * характерны многочисленные комплексные соединения, в которых, за редким исключением, проявляется координационное число 6. Основной признак этих комплексных соединений - их кинетическая устойчивость в водных растворах.

Гексааква-ион [Сг(Н 2 0) 6 ] 3+ сине-фиолетового цвета входит в состав многих кристаллогидратов: CrCl 3 -6H 2 0, KCr(S0 4) 2 -12Н 2 0 и т.д. Получение этого катионного комплекса можно выразить следующим уравнением:

Состав катионных комплексов Сг(Ш) может изменяться в зависимости от pH, температуры и концентрации, в связи с чем их окраска изменяется от фиолетовой до зеленой. По мере замещения молекул Н 2 0 в комплексном катионе, например, на хлор могут образоваться различные изомерные формы СгС1 3 6Н 2 0:

Наиболее многочисленными являются комплексы с аминами в качестве лигандов. Среди них обнаружены соединения со всевозможными типами изомерии. Кроме моноядерных комплексов, например 2+ , могут существовать и полиядерные, в которых два и более атомов металла связаны с помощью гидроксильных мостиков.

Анионные комплексы - хроматы - разнообразны по своему составу и могут быть получены с помощью следующих реакций:

Окраска анионных комплексов зависит от природы лиганда: 3_ - изумрудно-зеленого цвета, [СгС1 6 ] 3_ - розово-красного, a 3_ - желтого.

Анионный комплекс [Сг(ОН) 6 ] :1 “ образует многочисленные соли - гид- роксохроматы, устойчивые в твердом состоянии, а в растворах - лишь в сильнощелочной среде.

Безводные соединения Сг(Ш) по структуре и свойствам отличаются от кристаллогидратов. Так, безводная соль СгС1 3 имеет полимерную слоистую структуру, тогда как СгС1 3 -6Н 2 0 - островную структуру. СгС1 3 в отличие от СгС1 3 -6Н 2 0 в воде растворяется очень медленно. Соединения Сг(ПТ) в водных растворах обычно гидролизуются, и на первой стадии этого процесса идет образование комплексного иона [Сг(Н 2 0)0Н| 3+ :

В дальнейшем может происходить полимеризация этих комплексов. Сульфид Cr 2 S 3 и карбонат Сг 2 (С0 3) 3 характеризуются еще большей неустойчивостью. Так, Cr 2 S 3 и Сг 2 (С0 3) 3 нельзя получить из водного раствора путем обменных реакций, ибо эти соединения вследствие большей растворимости по сравнению с Сг(ОН) 3 полностью гидролизуются:

Оксид хрома(У1) Сг0 3 представляет собой кристаллическое вещество темно-красного цвета. Он получается действием концентрированной H 2 S0 4 на дихроматы:

Сг0 3 имеет цепочечную структуру, образованную тетраэдрами Сг0 4 .

Сг0 3 - типичный кислотный оксид. Он легко растворяется в воде с образованием раствора хромовой кислоты Н 2 Сг0 4 и двухромовой кислоты 11 2 Сг 2 0 7 , между которыми устанавливается равновесие:

С увеличением разведения равновесие сдвигается в сторону образования НСг0 4

В щелочных растворах при pH > 7 Сг0 3 образует тетраэдрический хромат-ион Сг() 4 желтого цвета. В интервале pH от 2 до 6 существуют в равновесии ион НСг0 4 и оранжево-красный дихромат-ион Сг 2 0| .

В щелочной среде протекают такие процессы:

Положение равновесия зависит не только от pH, но и от характера катионов, которые могут образовать нерастворимые хроматы (катионы Ва 2+ , РЬ 2+ и Ag* образуют хроматы).

Таким образом, добавление кислот смещает равновесие влево, а прибавление щелочей - вправо:

На этом основано получение хроматов из дихроматов, и наоборот:

Соединения Cr(VI) являются окислителями. В кислой среде дихромат- ион Сг 2 0 2 проявляет сильные окислительные свойства, восстанавливаясь до Сг(Ш):

Высокая окислительная активность Cr(VI) проявляется в реакции взаимодействия К 2 Сг 2 0 7 с концентрированной НС1 при нагревании:

Эта реакция удобна для получения хлора в небольших количествах. При прекращении нагревания прекращается и выделение хлора. Действием очень сильных восстановителей производные Cr(VI) могут быть восстановлены в нейтральной и слабощелочной средах. Например, взаимодействие с (NH^S протекает при нагревании:

Необходимо отметить, что окислительные свойства Cr(VI) в щелочной среде выражены значительно слабее, чем в кислой. Таким образом, в кислых и щелочных растворах соединения Сг(Ш) и Cr(VI) существуют в разных формах: в кислой среде преобладают ионы Сг 3+ или Сг 7 0 2- , а в щелочной - ионы |Сг(ОН) (.| 3 или СЮ 2 , в связи с чем взаимопревращение соединений Сг(Ш) в Cr(VI) и наоборот протекает в зависимости от реакции среды:

в кислой среде

в щелочной среде

Из этого следует, что в кислой среде выражены окислительные свойства Cr(VI), а в щелочной среде - восстановительные свойства Сг(Ш):

Хромовая кислота Н 2 Сг0 4 значительно слабее дихромовой кислоты. Так, для Н 2 СгО, К, = 3 10 7 , а для Н 2 Сг 2 0 7 К, = 2 10" 2 .

Н 2 Сг 2 0 7 - простейший представитель изополикислот хрома, отвечающих общей формуле яЭ0 3 *тН 2 0 (где п > т) и известных в виде солей иолихроматов. Так, кроме оранжево-красных дихроматов = 1, п = 2) получены темно-красные трихроматы (т = 1, п = 3) и коричнево-красные тс- трахроматы (w = 1, п = 4).

Полихроматы образуются при действии кислот на хроматы:

При действии щелочей на растворы иолихроматов происходит обратный процесс с образованием в конечном итоге хроматов.

Больших серий поликислот и полианионов Cr(VI) не образует, что объясняется размерами иона и его тенденцией к образованию кратных связей Сг=0.

Для хрома характерно образование нероксидных соединений при взаимодействии с Н 2 0 2:

Кроме синего оксид-дипероксида хрома(У1) СгО- хром образует соли пероксокислот H 2 Cr 2 0 12 ,11 2 Сг 2 0 8 и Н 2 Сг0 6 следующей структуры (рис. 6.1).

Рис. 6.1. Структура пентаиероксодихромовой кислоты H,Cr 2 O l2

Кислота Н 2 Сг 2 0 |2 образует соли, окрашенные в синий цвет, а П,Сг,0 8 - в красный.

Пероксидные соединения хрома устойчивы в эфирном растворе, в водных растворах они нестойки и легко разлагаются с выделением О., и образованием ионов СгОф (в щелочной среде) или соединений Сг(111) (в кислой). Предполагается, что устойчивость оксид-динероксида хрома(У1) Сг0 5 в эфире обусловлена образованием комплекса, имеющего форму псн- тагональной пирамиды с атомом кислорода в вершине (рис. 6.2).

Рис. 6.2. Структура оксид-дипероксида хрома(У1) Сг0 3 в эфире, где L - молекула эфира или воды

Этот комплекс может быть получен обработкой раствора дихромата пероксидом водорода в кислой среде:

По окрашиванию эфирного слоя в синий цвет можно судить об образовании пероксокомплекса. Эта реакция очень чувствительна и специфична и поэтому широко используется в аналитической химии для обнаружения дихромат-иона.

Качественные реакции на хромат-ион (Сг0 4 ~)

Техническое применение хрома общеизвестно: в качестве легирующей добавки хром широко используется для получения высокопрочных сталей, никелевых и медных сплавов. Хроматы и дихроматы широко используются в кожевенной, текстильной, лакокрасочной и фармацевтической промышленности. Хромат свинца РЬСг0 4 под названием желтый крон применяется для изготовления красок. Дихроматы К 2 Сг 2 0 7 и Na 2 Cr 2 0 7 -2H 2 0, известные под названием хромпиков, применяются в аналитической химии.

Смесь равных объемов насыщенного на холоду раствора К 2 Сг 2 0 7 и концентрированной H 2 S0 1 называется хромовой смесью и применяется для энергичного окисления.

Все соединения хрома очень ядовиты!

Описание

Хром, как химический элемент представляет собой твердое металлическое вещество голубовато-белого цвета (см. фото). Он не окисляется при контакте с воздухом. Иногда его относят к черным металлам. Название свое он заслужил благодаря разнообразным комбинациям цвета своих соединений, и происходит оно от греческого слова chroma – цвет. Интересный факт, что слог «хром» применяется во многих сферах жизни. Например, слово «хромосома» (с греч.) – «тело, которое окрашивается».

Открытие этого элемента приходится на 1797 год и принадлежит Л.Н. Воклену. Он обнаружил его в минерале крокоите.

Большой природный запас хрома находится в земной коре, что не скажешь о морской воде. Страны, которые обладают этими запасами - это ЮАР, Зимбабве, США, Турция, Мадагаскар и другие. Биогенные соединения этого микроэлемента входят в состав тканей растений и животных, причем большее содержание приходится на животных.

Важное влияние хрома на организм человека было определено после проведения опыта на крысах в конце 1950-х годов. Двое ученых, Щварц и Мерц, в качестве эксперимента кормили крыс пищей, скудной на хром, что привело к появлению у животных непереносимости сахара, но при добавлении его в рацион, эти симптомы исчезали.

Действие хрома и его роль в организме

Хром в организме человека задействован во многих сферах и имеет очень важную роль, однако основная его задача заключается в поддержке нормального баланса сахара в сыворотке крови. Это происходит за счет усиления процесса обмена углеводов путем облегчения транспортировки глюкозы внутрь клетки. Данное явление носит название глюкотолерантный фактор (ГТФ). Минерал раздражает рецепторы клетки по отношению к инсулину, который легче вступает с ней в взаимодействие, при этом уменьшается его потребность для организма. Поэтому микроэлемент так жизненно важен для диабетиков, особенно со II типом болезни (инсулин-независимым), так как их способность пополнять запасы хрома с пищей очень мала. Даже, если человек не болен диабетом, но у него присутствуют проблемы с обменом веществ, то он автоматически попадает в категорию риска и его состояние расценивается как диабетоподобное.

Выходит, что положительное действие хрома проявляется во всех недугах, связанных со слабым взаимодействием организма с инсулином. Такими болезнями являются гипергликемия (гипогликемия), ожирение, гастриты, колиты, язвы, болезнь Крона, болезнь Миньера, рассеянный склероз, мигрени, эпилепсия, инсульт, гипертония.

Хром участвует в синтезе нуклеиновых кислот и тем самым поддерживает целостность структуры РНК и ДНК, которые несут информацию о генах и отвечают за наследственность.

Если у человека проявляется йододефицит и восполнить его нет возможности - хром может его заменить, что очень важно для нормального функционирования щитовидной железы, которая в свою очередь отвечает за правильный обмен веществ.

Хром снижает риск развития многих сердечнососудистых заболеваний. Как он действует? Макроэлемент принимает участие в метаболизме липидов. Он расщепляет вредный холестерин низкой плотности, который забивает сосуды, тем самым препятствуя нормальной циркуляции крови. При этом повышается содержание холестерина, который выполняет положительные функции в организме.

Повышая степень содержания стероидного гормона, минерал укрепляет кости . В связи с этим полезным свойством ним лечат остеопороз. Хром в сочетании с витамином С участвует в процессе регулирования внутриглазного давления и стимулирует транспортировку глюкозы к кристаллику глаза. Эти свойства позволяют использовать данное химическое вещество в лечебных процессах против глаукомы и катаракты.

Цинк, железо и ванадий оказывают отрицательное воздействие на попадание хрома в тело человека. Для своей транспортировки в крови он образует связь с белковым соединением трансферрином, который, в случае конкуренции хрома с вышеперечисленными элементами, выберет последнего. Поэтому в организме человека с переизбытком железа, всегда присутствует дефицит хрома, что может ухудшить состояние при диабете.

Основная его часть содержится в органах и тканях, а в крови – в десятки раз меньше. Поэтому, если в организме происходит пересыщение глюкозой, то количество макроэлемента в крови резко увеличивается за счет его передислокации из органов-накопителей.

Суточная норма

Физиологическая потребность в минерале обусловлена возрастом и полом человека. В раннем грудном возрасте эта потребность отсутствует, так как у младенцев он накопился еще до рождения и расходуется до 1 года. Далее, для малышей в возрасте 1-2 лет эта норма составляет 11 мкг в сутки. С 3 до 11 лет - это 15 мкг/сутки. В среднем возрасте (11-14 лет) потребность увеличивается до 25 мкг/сутки, а в подростковом (14-18 лет) - до 35 мкг/сутки. Что же касается взрослого человека, тут уж отметка достигает 50 мкг/сутки.

В норме содержание хрома в организме должно быть около 6 мг. Но даже если придерживаться правильного питания, достижение нормы очень затруднительно. Только в органических соединениях идет усваивание микроэлементов, а способствуют этому процессу аминокислоты, которые находятся только в растениях. Поэтому лучшие источники этого минерала находятся в пище, в натуральных продуктах.

Если доза составляет более 200 мг, то он становится токсичен, а 3 г - смертельны.

Недостаток или дефицит хрома

Есть несколько причин возникновения недостатка минерала в организме. Из-за внедрения в почву определенных удобрений она пересыщена щелочными соединениями, что уменьшает содержание элемента в нашем рационе питания. Но даже если поступление этого минерала с продуктами полноценно, усвоение хрома будет затруднено при нарушенном обмене веществ. Также недостаток может возникнуть и по причине тяжелых физических нагрузок, в состоянии беременности, стрессовых состояниях - в случаях, когда минерал активно расходуется и необходимы дополнительные источники для его пополнения.

При нехватке микроэлемента глюкоза усваивается неэффективно, поэтому ее содержание может быть занижено (гипогликемия) или завышено (гипергликемия). Повышается уровень холестерина и сахара в крови. Это приводит к повышенной тяге к сладкому - организм требует углеводов и не только «сладких». Чрезмерное употребление углеводов ведет к еще более значительной потере хрома - замкнутый круг. В конце концов, возникают такие болезни, как избыточный вес (в случае гипогликемии - резкое похудение), сахарный диабет, атеросклероз.

Также при недостатке хрома можно наблюдать такие последствия (симптомы):

  • нарушение сна, беспокойные состояния;
  • головные боли;
  • задержка роста;
  • нарушение зрения;
  • снижение чувствительности ног и рук;
  • нарушается работа нервно-мышечных комплексов;
  • снижается репродуктивная функция у мужского пола;
  • наблюдается чрезмерная утомляемость.

При дефиците хрома, если нет возможности пополнить его запасы с приемами пищи, необходимо добавлять в свой рацион биодобавки, но перед употреблением нужно провести консультации с доктором о дозах и способах приема.

Избыток хрома - в чем его вред?

В основном переизбыток хрома в органах и тканях происходит из-за отравления на предприятиях, в технологический процесс которых входит наличие хрома и его пыли. Люди, которые работают на вредных производствах и контактируют с этим элементом, болеют раком дыхательных путей в десятки раз чаще, так как хром воздействует на хромосомы и соответственно на структуру клеток. Соединения хрома также присутствуют в шлаках и медной пыли, что проводит к астматическим болезням.

Дополнительная опасность переизбытка микроэлемента может появиться при неправильном приеме биодобавок без рекомендации врача. Если у человека наблюдается дефицит цинка или железа, то вместо них всасывается чрезмерное количество хрома.

Помимо вышеперечисленных недугов, избыто хрома может быть вреден еще и тем, что могут появиться язвы на слизистых оболочках, аллергии, экземы и дерматиты, нервные расстройства.

В каких пищевых источниках содержится?

Из каких пищевых продуктов можно пополнить запас хрома? Самый ценный продукт в этом случае - это пивные дрожжи, причем можно употреблять и пиво, но в разумных пределах без вреда для здоровья. Также богаты на этот микроэлемент печень, орехи, морепродукты, проросшие зерна пшеницы, арахисовое масло, перловка, ячмень, говядина, яйца, сыр, грибы, хлеб из муки грубого помола. Из овощей выделяют капуста, репчатый лук, редис, бобовые, зеленый горошек, помидоры, кукуруза, ревень, свекла, а из фруктов и ягод - это рябина, яблоки, голубика, виноград, черника, облепиха. Заваривая чайки из лекарственных растений (сушеницы, мелиссы), можно тоже подзарядиться хромом.

Бедны на этот микроэлемент высокоочищенные продукты: сахар, макароны, мука тонкого помола, кукурузные хлопья, молоко, масло, маргарин. Вообще, пища с большим содержанием жиров всегда беднее на микроэлементы, чем пища с пониженным их содержанием. И еще, в продуктах хром сохранится лучше, если приготовлены они были в посуде из нержавеющей стали.

Показания к применению препаратов хрома

Хром (препараты с хромом) назначают как для профилактики, так и для лечения внутренних болезней:

  • нарушение обмена веществ: сахарный диабет, ожирение;
  • заболевания кишечника;
  • болезни печени и сопутствующих ей органов;
  • сердечно сосудистая патология;
  • воспалительные процессы в мочевыводящих путях и заболевания почек;
  • аллергические состояния, сопровождающиеся дисбактериозом;
  • различные формы иммунодефицита.

Также хром назначается в соответствии со следующими показаниями:

  • для профилактики болезней сердца и онкологических предрасположенностей;
  • для защиты от болезни Паркинсона и при депрессии;
  • как вспомогательное средство при похудении;
  • для укрепления иммунной системы;
  • для устранения негативных последствий воздействия окружающей среды;
  • при состояниях, сопровождающихся повышенным потреблением хрома (беременность, лактация, период роста и полового созревания, тяжелые физические нагрузки).

Общие сведения и методы получения

Хром (Сг) - твердый блестящий металл. Как самостоятельный элемент был впервые выделен в 1797 г. Вокеленом из минерала крокоит, кото­рый открыл академик Паллас при изучении сибирских минералов в 1765 г. Свое название хром получил от греческого «chromos», что оз­начает цвет, из-за различных цветов его соединений - от зеленого до красного.

В свободном состоянии хром не встречается. Из многочисленных руд, содержащих хром, промышленное значение имеет только хромит FeO-Cr 2 0 3 , в котором содержится более 65 % Сг 2 0 3 (по массе), ос­тальное FeO. Хром входит в состав многих минералов, в частности в состав крокоита РЬСг0 4 ; к другим минералам, содержащим хром, от­носятся финицит, менахлоит или феникохлоит ЗРЬО-2Ст 2 0 3 , березовит, трапакалит, магнохромит и др. Известна большая группа силикатных минералов, содержащих хром, который придает этим минералам ха­рактерную окраску. Хромит относится к классу изоморфных минералов кубической системы, известных под названием шпинелей, которые мож­но охарактеризовать общей формулой -ТО-У 2 0 3 , где X - ион двухва­лентного металла, У-ион трехвалентного металла. В промышленных хромовых рудах содержание С,г 2 0 3 редко превышает 50 % (по массе). Феррохром с содержанием 65-70 % Сг, используемый в металлургии, получают прямым восстановлением хромовой руды с соотношением Cr:Fe=3:l. Хромит восстанавливают углеродом, причем для получе­ния феррохрома содержание оксида хрома в руде должно быть не ме­нее 48%. В процессе плавки протекает реакция: Fe0-Cr 2 0 3 +4C->--*-Fe + 2Cr + 4CO.

Хром технической чистоты получают алюминотермическим, силико-термическим, электролитическим и другими методами из оксида хрома, который получают из хромистого железняка. Из методов производства технически чистого металла, пригодного для дальнейшего рафинирова­ния, наиболее прост и экономически выгоден электролитический. Стои­мость электролитического хрома несколько выше, чем хрома, получае­мого другими методами, но примеси из него могут быть удалены наи­более легко. Из методов очистки электролитического хрома от примесей наиболее широкое применение получила обработка хрома в сухом очи­щенном водороде. В процессе рафинирования из металла удаляется главным образом кислород, несколько понижается содержание азота и других металлических н неметаллических примесей, особенно элемен­тов, имеющих высокое давление паров. Рафинирование электролитиче­ского хрома проводится длительным нагревом при 1300-1500 °С в ус­ловиях непрерывного притока водорода. Глубокую очистку хрома можно осуществлять также вакуумной дистилляцией с конденсацией Паров на холодной поверхности.

Наиболее чистый хром для лабораторных исследований получают иодидным методом. Этот процесс основан на образовании летучих

иодидов хрома (при 700-900 °С) и их диссоциации на нагретой по­верхности (при 1000-1100 °С). Металлический хром после иодидного рафинирования пластичен в литом состоянии (удлинение при растяже­нии 9-18%).

Физические свойства

Атомные характеристики. Атомный номер хрома 24, атомная масса 51,996 а. е. м., атомный объем 7,23*10 -6 м 3 / м оль. Атомный (металли­ческий) радиус хрома 0,128 нм, ковалентный 0,118 нм. Электронная конфигурация внешних оболочек 3d 5 4s 1 . Электроотрицательность 1,6. Значения потенциалов ионизации J (эВ): 6,746; 16,49; 31. При атмо­сферном давлении хром обладает о. ц. к. решеткой, при комнатной температуре а=0,2884 нм. Энергия кристаллической решетки 337,5 мкДж/кмоль.

Химические свойства

В. В соединениях хром проявляет степени окисления +2, +3, +6, реже +4, +5, +1.

При нормальной температуре хром химически устойчив; почти не окисляется на воздухе, даже в присутствии влаги. При нагреве окисление протекает только на поверхности. Некоторые кислоты, например кон­центрированная азотная, фосфорная, хлорноватая, хлорная, образуют иа хроме окисную пленку, приводя к его пассивации. В этом состоянии хром обладает исключительно высокой коррозионной стойкостью и на него не действуют разбавленные минеральные кислоты. Хром является электроотрицательным по отношению к наиболее практически важным металлам и сплавам, и если он с ними образует гальванопару, то ус­коряет их коррозию,

Электролитически осажденный хром содержит большое количество растворенного водорода - до ~5 % (ат.). В данной системе возможно образование СгН (1,9% Н), СгН 2 (3,73% Н) или СгН 3 (5,49% Н), которые обладают низкой термической стабильностью и легко разла­гаются при незначительном нагревании. Теплота растворения водорода в твердом хроме при 797-1097 °С составляет 105 кДж/моль Н 2 , теп­лота образования СгН 2 Д//обр = 15,900 кДж/моль, Растворимость кис­лорода в твердом хроме при 1347 °С составляет 0,03% и снижается при понижении температуры. Наиболее распространенным оксидом хрома является Сг 2 0 3 (31,6 % О), представляющий собой тугоплавкое вещество зеленого цвета (зеленый хром), применяемое для приготов­ления клеевой и масляной красок. Высший оксид хрома Сг0 3 - темно-красные игольчатые кристаллы представляет собой хромовый ангид­рид, хорошо растворим в воде

Технологические свойства

Хром технической чистоты при комнатной температуре хрупок и при­обретает пластичность лишь при нагреве выше 200-225 "С Хром от­носится к группе хладноломких металлов, пластичность которых резко падает при снижении температуры.

Области применения

Хром широко применяется в металлургии, главным образом в качестве легирующей добавки к сталям различного назначения. Добавка до 3 °/о Сг к обычным углеродистым сталям значительно повышает их механические свойства. Стали с содержанием 5-6 % Сг отличаются повышенным сопротивлением коррозии. При содержании хрома более 10 % стали обладают высокой коррозионной стойкостью (нержавею­щие). Хром в качестве легирующей добавки входит также в состав

жаропрочных сплавов иа основе никеля и кобальта. Сплавов иа основе хрома не существует. Большое количество чистого хрома используется в гальванотехнике; хромирование является надежным средством борь­бы с коррозией. Хромовые покрытия, помимо высокой коррозионной стойкости, обладают также высоким сопротивлением истиранию.

Хром в виде соединений используется при производстве огнеупор­ных материалов и пигментов.

Похожие статьи

© 2024 rsrub.ru. О современных технологиях кровли. Строительный портал.