Нервная регуляция значение нервной системы. Нервная система человека

Каждый орган или система в организме человека играют свою роль. При этом все они взаимосвязаны. Значение трудно переоценить. Она отвечает за корреляцию между всеми органами и их системами и за функционирование организма в целом. В школе рано начинают ознакомление с таким многогранным понятием, как нервная система. 4 класс - это еще маленькие дети, которые не могут глубоко разобраться во многих сложных научных понятиях.

Структурные единицы

Главные структурные и функциональные единицы нервной системы (НС) - нейроны. Они представляют собой сложные возбудимые секретирующие клетки с отростками и воспринимают нервное возбуждение, перерабатывают его и передают другим клеткам. Нейроны также могут оказывать на клетки-мишени модулирующее или тормозное воздействие. Они являются составной частью био- и хеморегуляции организма. С функциональной точки зрения нейроны являются одной из основ организации нервной системы. Они объединяют несколько других уровней (молекулярный, субклеточный, синаптический, надклеточный).

Нейроны состоят из тела (сома), длинного отростка (аксона) и небольших ветвящихся отростков (дендритов). В разных отделах нервной системы они имеют различную форму и величину. В некоторых из них длина аксона может достигать 1,5 м. От одного нейрона отходит до 1000 дендритов. По ним возбуждение распространяется от рецепторов к телу клетки. По аксону импульсы передаются эффекторным клеткам или другим нейронам.

В науке существует понятие «синапс». Аксоны нейронов, подходя к другим клеткам, начинают ветвиться и образуют многочисленные окончания на них. Такие места и называют синапсами. Аксоны образуют их не только на нервных клетках. Синапсы есть на мышечных волокнах. Эти органы нервной системы присутствуют даже на клетках желез внутренней секреции и кровеносных капиллярах. представляют собой покрытые глиальными оболочками отростки нейронов. Они выполняют проводящую функцию.

Нервные окончания

Это специализированные образования, расположенные на кончиках отростков нервных волокон. Они обеспечивают в виде импульса. Нервные окончания участвуют в формировании передающих и воспринимающих концевых аппаратов разной структурной организации. По функциональному назначению выделяют:

Синапсы, которые передают нервный импульс между нервными клетками;

Рецепторы (афферентные окончания), направляющие информацию от места действия фактора внутренней или внешней среды;

Эффекторы, передающие импульс от нервных клеток к другим тканям.

Деятельность нервной системы

Нервная система (НС) - целостная совокупность нескольких взаимосвязанных между собой структур. Она способствует слаженной регуляции деятельности всех органов и обеспечивает реакцию на изменения условий. Нервная система человека, фото которой представлено в статье, связывает воедино двигательную активность, чувствительность и работу иных регуляторных систем (иммунной, эндокринной). Деятельность НС связана с:

Анатомическим проникновением во все органы и ткани;

Установлением и оптимизацией взаимосвязи между организмом и окружающей внешней средой (экологической, социальной);

Координированием всех обменных процессов;

Управлением системами органов.

Структура

Анатомия нервной системы очень сложна. В ней находится много структур, различных по строению и назначению. Нервная система, фото которой свидетельствуют о ее проникновении во все органы и ткани организма, играет важную роль как приемник внутренних и внешних раздражителей. Для этого предназначены особые сенсорные структуры, которые находятся в так называемых анализаторах. Они включают специальные нервные устройства, которые способны воспринимать поступающую информацию. К ним относятся следующие:

Проприорецепторы, собирающие информацию, касающуюся состояния мышц, фасций, суставов, костей;

Экстерорецепторы, располагающиеся в кожных покровах, слизистых оболочках и органах чувств, способные воспринимать полученные из внешней среды раздражающие факторы;

Интерорецепторы, расположенные во внутренних органах и тканях и ответственные за принятие биохимических изменений.

Основное значение нервной системы

Работа НС тесно связана как с окружающим миром, так и с функционированием самого организма. С ее помощью происходит восприятие информации и ее анализ. Благодаря ей происходит распознавание раздражителей внутренних органов и поступающих извне сигналов. Нервная система отвечает за реакции организма на полученную информацию. Именно благодаря ее взаимодействию с гуморальными механизмами регуляции обеспечивается приспособляемость человека к окружающему миру.

Значение нервной системы состоит в обеспечении координации отдельных частей организма и поддержании его гомеостаза (равновесного состояния). Благодаря ее работе происходит приспособление организма к любым изменениям, называемое адаптивным поведением (состоянием).

Базовые функции НС

Функции нервной системы довольно многочисленны. К основным из них относятся следующие:

Регуляция жизнедеятельности тканей, органов и их систем в нормальном режиме;

Объединение (интеграция) организма;

Сохранение взаимосвязи человека с окружающей средой;

Контроль над состоянием отдельных органов и организма в целом;

Обеспечение активации и поддержания тонуса (рабочего состояния);

Определение деятельности людей и их психического здоровья, являющихся основой социальной жизни.

Нервная система человека, фото которой представлено выше, обеспечивает такие мыслительные процессы:

Восприятие, усвоение и переработку информации;

Анализ и синтез;

Формирование мотивации;

Сравнение с имеющимся опытом;

Постановку цели и планирование;

Коррекцию действия (исправление ошибок);

Оценивание результатов деятельности;

Формирование суждений, выводов и заключений, общих (абстрактных) понятий.

Нервная система помимо сигнальной выполняет еще и Благодаря ей выделяемые организмом биологически активные вещества обеспечивают жизнедеятельность иннервируемых органов. Органы, которые лишены такой подпитки, со временем атрофируются и отмирают. Функции нервной системы очень важны для человека. При изменениях существующих условий окружающей среды с их помощью происходит приспособление организма к новым обстоятельствам.

Процессы, происходящие в НС

Нервная система человека, схема которой довольно проста и понятна, отвечает за взаимодействие организма и окружающей среды. Для его обеспечения осуществляются такие процессы:

Трансдукция, представляющая собой превращение раздражения в нервное возбуждение;

Трансформация, в ходе которой происходит преобразование входящего возбуждения с одними характеристиками в выходящий поток с другими свойствами;

Распределение возбуждения по разным направлениям;

Моделирование, представляющее собой построение образа раздражения, заменяющего сам его источник;

Модуляция, изменяющая нервную систему или ее деятельность.

Значение нервной системы человека также состоит во взаимодействии организма с внешней средой. При этом возникают различные ответные реакции на любые виды раздражителей. Основные виды модуляции:

Возбуждение (активация), заключающаяся в повышении активности нервной структуры (это состояние является доминантным);

Торможение, угнетение (ингибиция), состоящее в снижении активности нервной структуры;

Временная нервная связь, представляющая собой создание новых путей передачи возбуждения;

Пластическая перестройка, которая представлена сенситизацией (улучшением передачи возбуждения) и габитуацией (ухудшением передачи);

Активация органа, обеспечивающего рефлекторную реакцию организма человека.

Задачи НС

Основные задачи нервной системы:

Рецепция - улавливание изменений во внутренней или внешней среде. Она осуществляется сенсорными системами при помощи рецепторов и представляет собой восприятие механических, термических, химических, электромагнитных и других видов раздражителей.

Трансдукция - преобразование (кодирование) поступившего сигнала в нервное возбуждение, представляющее собой поток импульсов с характеристиками, свойственными раздражению.

Осуществление проведения, заключающееся в доставке возбуждения по нервным путям в необходимые участки НС и к эффекторам (исполнительным органам).

Перцепция - создание нервной модели раздражения (построение его сенсорного образа). Этот процесс формирует субъективную картину мира.

Трансформация - преобразование возбуждения из сенсорного в эффекторное. Его целью является осуществление ответной реакции организма на произошедшее изменение среды. При этом происходит передача нисходящего возбуждения из высших отделов ЦНС к нижерасположенным или в ПНС (рабочим органам, тканям).

Оценка результата деятельности НС при помощи обратных связей и афферентации (передачи сенсорной информации).

Строение НС

Нервная система человека, схема которой представлена выше, подразделяется в структурном и функциональном отношении. Работу НС невозможно понять в полной мере, не разобравшись в функциях ее основных видов. Только изучив их назначение, можно осознать сложность всего механизма. Нервная система подразделяется на:

Центральную (ЦНС), которая осуществляет реакции различного уровня сложности, называемые рефлексами. Она воспринимает раздражители, получаемые из внешней среды и от органов. К ней относят головной и спинной мозг.

Периферическую (ПНС), соединяющую ЦНС с органами и конечностями. Ее нейроны находятся далеко от головного и спинного мозга. Она не защищена костями, поэтому подвержена механическим повреждениям. Только благодаря нормальному функционированию ПНС возможна человека. Эта система ответственна за реагирование организма на опасность и стрессовые ситуации. Благодаря ей в подобных ситуациях учащается пульс и повышается уровень адреналина. Заболевания сказываются на работе ЦНС.

ПНС состоит из пучков нервных волокон. Они выходят далеко за пределы спинного и головного мозга и направляются к разным органам. Их называют нервами. К ПНС относятся Они являются скоплением нервных клеток.

Заболевания периферической нервной системы разделяются по таким принципам: топографическо-анатомическому, этиологическому, патогенезу, патоморфологии. К ним относятся:

Радикулиты;

Плекситы;

Фуникулиты;

Моно-, поли- и мультиневриты.

По этиологии заболеваний они делятся на инфекционные (микробные, вирусные), токсические, аллергические, дисциркуляторные, дисметаболические, травматические, наследственные, идиопатические, компрессийно-ишемические, вертеброгенные. Заболевания ПНС могут быть первичными (проказа, лептоспироз, сифилис) и вторичными (после детских инфекций, мононуклеоза, при узелковом периартериите). По патоморфологии и патогенезу они делятся на невропатии (радикулопатии), невриты (радикулиты) и невралгии.

Рефлекторная деятельность в значительной степени определяется которые представляют собой совокупность структур ЦНС. Их скоординированная деятельность обеспечивает регуляцию различных функций организма или рефлекторные акты. Нервные центры имеют несколько общих свойств, определяемых структурой и функцией синаптических образований (контакт между нейронами и другими тканями):

Односторонность процесса возбуждения. Он распространяется по в одном направлении.

Иррадиация возбуждения, заключающаяся в том, что при значительном увеличении силы раздражителя происходит расширение области вовлекаемых в этот процесс нейронов.

Суммация возбуждения. Этот процесс облегчается наличием огромного множества синаптических контактов.

Высокая утомляемость. При длительном повторном раздражении происходит ослабление рефлекторной реакции.

Синаптическая задержка. Время рефлекторной реакции полностью зависит от скорости движения и времени распространения возбуждения через синапс. У человека одна такая задержка составляет около 1 мс.

Тонус, который представляет собой наличие фоновой активности.

Пластичность, являющаяся функциональной возможностью существенно модифицировать общую картину рефлекторных реакций.

Конвергенция нервных сигналов, определяющая физиологический механизм пути прохождения афферентной информации (постоянного потока нервных импульсов).

Интеграция функций клеток в нервных центрах.

Свойство доминантного нервного очага, характеризующегося повышенной возбудимостью, способностью к возбуждению и суммированию.

Цефализация нервной системы, заключающаяся в перемещении, координации деятельности организма в главных отделах ЦНС и сосредоточении в них функции регуляции.

Нервная система регулирует деятельность всех органов и систем, обусловливая их функциональное единство, и обеспечивает связь организма как целого с внешней средой.

Структурной единицей нервной системы является нервная клетка с отростками - нейрон . Bся нервная система представляет собой совокупность нейронов, которые контактируют друг с другом при помощи специальных аппаратов - синапсов . По структуре и функции различают три типа нейронов:

  • рецепторные , или чувствительные;
  • вставочные , замыкательные (кондукторные);
  • эффекторные , двигательные нейроны, от которых импульс направляется к рабочим органам (мышцам, железам).

Нервная система условно подразделяется на два больших отдела - соматическую , или анимальную, нервную систему и вегетативную , или автономную, нервную систему. Соматическая нервная система осуществляет преимущественно функции связи организма с внешней средой, обеспечивая чувствительность и движение вызывая сокращение скелетной мускулатуры. Так как функции движения и чувствования свойственны животным и отличают их от растений, эта часть нервной системы получила название анимальной (животной).

Вегетативная нервная система оказывает влияние на процессы так называемой растительной жизни, общие для животных и растений (обмен веществ, дыхание, выделение и др.), отчего и происходит ее название (вегетативная - растительная). Обе системы тесно связаны между собой, однако вегетативная нервная система обладает некоторой долей самостоятельности и не зависит от нашей воли, вследствие чего ее также называют автономной нервной системой. Ее делят на две части симпатическую и парасимпатичесакую .

В нервной системе выделяют центральную часть - головной и спинной мозг - центральная нервная система и переферическую , представленную отходящими от головного и спинного мозга нервами, - переферическая нервная система. На разрезе мозга видно, что он состоит из серого и белого вещества.

Серое вещество образуется скоплениями нервных клеток (с начальными отделами отходящих от их тел отростков). Отдельные ограниченные скопления серого вещества носят названия ядер .

Белое вещество образуют нервные волокна, покрытые миелиновой оболочкой (отростки нервных клеток, образующих серое вещество). Нервные волокна в головном и спинном мозге образуют проводящие пути .

Переферические нервы в зависимости от того, из каких волокон (чувствительных либо двигательных) они состоят, подразделяются на чувствительные , двигательные и смешанные . Тела нейронов, отростки которых состовляют чувствительные нервы, лежат в нервных узлах вне мозга. Тела двигательных нейронов лежат в передних рогах спинного мозга или двигательных ядрах головного мозга.

И.П. Павлов показал, что центральная нервная система может оказывать три рода воздействий на органы:

  • 1) пусковое , вызывающее либо прекращающее функцию органа (сокращение мышцы, секрецию железы);
  • 2) сосудодвигательное , изменяющее ширину просвета сосудов и тем самым регулирующее приток к органу крови;
  • 3) трофическое , повышающее или понижающее и, следовательно потребление питательных веществ и кислорода. Благодаря этому постоянно согласуется функциональное состояние ргана и его потребность в питательных веществах и кислороде. Когда к работающей скелетной мышце по двигательным волокнам направляются импульсы, вызывающие ее сокращение, то одновременно по вегетативным нервным волокнам поступают импульсы, расширяющие сосуды и у силивающие . Тем самым обеспечивается энергетическая возможность выполнения мышечной работы.

Центральная нервная система воспринимает афферентную (чувствительную) информацию, возникающую при раздражении спецефических рецепторов и в ответ на это формирует соответствующие эфферентные импульсы, вызывающие изменения в деятельности определнных органов и систем организма.

"...если выключить все рецепторы, то человек должен заснуть
мертвым сном и никогда не проснуться".
И.М. Сеченов

Рефлекс - основная форма нервной деятельности. Ответная реакция организма на раздражение из внешней или внутренней среды, осуществляющаяся при участии центральной нервной системы, называется рефлексом .

Путь, по которому проходит нервный импульс от рецептора до эффектора (действующий орган), называется рефлекторной дугой .

В рефлекторной дуге различают пять звеньев:

  • рецептор;
  • чувствительное волокно, проводящее возбуждение к центрам;
  • нервный центр, где происходит переключение возбуждения с чувствительных клеток на двигательные;
  • двигательное волокно, несущее нервные импульсы на периферию;
  • действующий орган - мышца или железа.

Любое раздражение - механическое, световое, звуковое, химическое, температурное, воспринимаемое рецептером, трансформируется (преобразуется) или, как теперь принято говорить, кодируется рецептором в нервный импульс и в таком виде по чувствительным волокнам направляется в центральную нервную систему.

При помощи рецепторов организм получает информацию обо всех изменениях, происходящих во внешней среде и внутри организма.

В центральной нервной системе эта информация перерабатывается, отбирается и передается на двигательные нервные клетки, которые посылают нервные импульсы к рабочим органам - мышцам, железам и вызывают тот или иной приспособительный акт - движение или секрецию.

Рефлекс как приспособительная реакция организма обеспечивает тонкое, точное и совершенное уравновешивание организма с окружающей средой, а также контроль и регуляцию функций внутри организма. В этом его биологическое значение. Рефлекс является функциональной единицей нервной деятельности.

Вся нервная деятельность, как бы она не была сложна, складывается из рефлексов различной степени сложности, т.е. она является отраженной, вызванной внешним поводом, внешним толчком.
Из клинической практики: в клинике С.П. Боткина наблюдали больного, у которого из всех рецепторов тела функционировали один глаз и одно ухо. Как только больному закрывали глаз и затыкали ухо, он засыпал.

В опытах В.С. Галкина собаки, у которых путем операции одновременно были выключены зрительные слуховые и обонятельные рецепторы, спали по 20-23 ч в сутки. Пробуждались они только под влиянием внутренних потребностей или энергичного воздействия на кожные рецепторы. Следовательно, центральная нервная система работает по принципу рефлекса, отражения, по принцмпу стимул - реакция.

Рефлекторный принцип нервной деятельности был открыт великим французским философом, физиком и математиком Рене Декартом более 300 лет назад.
Развитие рефлекторная теория получила в фундументальных трудах русских ученых И.М. Сеченова и И.П. Павлова.

Время, прошедшее от момента нанесения раздражения до ответа на него, называется временем рефлекса. Оно слогается из времени, необходимово для возбуждения рецепторов, проведения возбуждения по чувствительным волокнам, по центральной нервной системе, по двигательным волокнам, и, наконец, латентного (скрытого) периода возбуждения рабочего органа. Большая часть времени уходит на проведение возбуждения через нервные центры - центральное время рефлекса .

Время рефлекса зависит от силы раздражения и от возбудимости центральной нервной системы. При сильном раздражении оно короче, при снижении возбудимости, вызванном, например, утомлением, время рефлекса увеличивается, приповышении возбудимости значительно уменьшается.

Каждый рефлекс можно вызвать только с определенного рецептивного поля. Например, рефлекс сосания возникает при раздражении губ ребенка; рефлекс сужения зрачка - при ярком свете (освещении сетчатки глаза) и т.

д.

Каждый рефлекс имеет свою локализацию (место расположения) в центральной нервной системе, т.е. тот ее участок, который необходим для его осуществления. Например, центр расширения зрачка - в верхнем грудном сегменте спинного мозга. При разрушении соответствующего отдела рефлекс отсутствует.

Только при целостности центральной нервной системы сохраняется все совершенство нервной деятельности. Нервным центром называется совокупность нервных клеток, расположенных в различных отделах центральной нервной системы, необходимая для осуществления рефлекса и достаточная для его регуляции.

Торможение

Казалось бы, что возбуждение, возникшее в центральной нервной системе, может беспрепятственно распространяться во всех направлениях и охватывать все нервные центры. В действительности, этого не происходит. В центральной нервной системе, кроме процесса возбуждения, одновременно возникает процесс торможения, выключающий те нервные центры, которые могли бы мешать или препятствовать осуществлению какого-либо вида деятельности организма, например сгибанию ноги.

Возбуждением называют нервный процесс, который либо вызывает деятельность органа, либо усиливает существующую.

Под торможением понимают такой нервный процесс, который ослабляет либо прекращает деятельность или препятствует ее возникновению. Взаимодействие этих двух активных процессов лежит в основе нервной деятельности.

Процесс торможения в центральной нервной системе был открыт в 1862 г. И. М. Сеченовым. В опытах на лягушках он делал поперечные разрезы головного мозга на различных уровнях и раздражал нервные центры, накладывая на разрез кристаллик поваренной соли. При этом обнаруживалось, что при раздражении промежуточного мозга наступает угнетение или полное торможение спинномозговых рефлексов: лапка лягушки, погруженная в слабый раствор серной кислоты, не отдергивалась.

Значительно позже английский физиолог Шеррингтон открыл, что процессы возбуждения и торможения участвуют в любом рефлекторном акте. При сокращении группы мышц тормозятся центры мышц-антагонистов. При сгибании руки или ноги центры мышц-разгибателей затормаживаются. Рефлекторный акт возможен только при сопряженном, так называемом реципрокном торможении мышц- антагонистов. При ходьбе сгибание ноги сопровождается расслаблением разгибателей и, наоборот, при разгибании тормозятся мышцы-сгибатели. Если бы этого не происходило, то возникла бы механическая борьба мышц, судороги, а не приспособительные двигательные акты.

При раздражении чувствительного нерва,

вызывающего сгибательный рефлекс, импульсы направляются к центрам мышц-сгибателей и через тормозные клетки Реншоу - к центрам мышц-разгибателей. В первых вызывают процесс возбуждения, а во вторых - торможения. В ответ возникает координированный, согласованный рефлекторный акт - сгибательный рефлекс.

Доминанта

В центральной нервной системе под влиянием тех или иных причин может возникнуть очаг повышенной возбудимости, который обладает свойством притягивать к себе возбуждения с других рефлекторных дуг и тем самым усиливать свою активность и тормозить другие нервные центры. Это явление носит название доминанты.

Доминанта относится к числу основных закономерностей в деятельности центральной нервной системы. Она может возникнуть под влиянием различных причин: голода, жажды, инстинкта самосохранения, размножения. Состояние пищевой доминанты хорошо сформулировано в русской пословице: "Голодной куме все хлеб на уме". У человека причиной доминанты может быть увлеченность работой, любовь, родительский инстинкт. Бсли студент занят подготовкой к экзамену или читает увлекательную книгу, то посторонние шумы не мешают ему, а даже углубляют его сосредоточенность, внимание.

Весьма важным фактором координации рефлексов является наличие в центральной нервной системе известной функциональной субординации, т. е. определенного соподчинения между ее отделами, возникающего в процессе длительной эволюции. Нервные центры и рецепторы головы как "авангардной" части тела, прокладывающей путь организму в окружающей среде, развиваются быстрее. Высшие отделы центральной нервной системы приобретают способность изменять активность и направление деятельности нижележащих отделов.

Важно отметить: чем выше уровень животного, тем сильнее власть самых высших отделов центральной нервной системы, "тем в большей степени высший отдел является распорядителем и распределителем деятельности организма" (И. П. Павлов).

У человека таким "распорядителем и распределителем" является кора больших полушарий головного мозга. Нет функций в организме, которые бы не поддавались решающему регулирующему влиянию коры.

Схема 1 . Распространение (направление показано стрелками) нервных импульсов по простой рефлекторной дуге

1 - чувствительный (афферентный) нейрон; 2 - вставочный (кондукторный) нейрон; 3 - двигательный (эфферентный) нейрон; 4 - нервные волокна тонкого и клиновидного пучков; 5 - волокна корково-спинномозгового пути.

По мере эволюционного усложнения многоклеточных организмов, функциональной специализации клеток, возникла необходимость регуляции и координации жизненных процессов на надклеточном, тканевом, органном, системном и организменном уровнях. Эти новые регуляторные механизмы и системы должны были появиться наряду с сохранением и усложнением механизмов регуляции функций отдельных клеток с помощью сигнальных молекул. Приспособление многоклеточных организмов к изменениям в среде существования могло быть выполнено при условии, что новые механизмы регуляции будут способны обеспечить быстрые, адекватные, адресные ответные реакции. Эти механизмы должны быть способны запоминать и извлекать из аппарата памяти сведения о предыдущих воздействиях на организм, а также обладать другими свойствами, обеспечивающими эффективную приспособительную деятельность организма. Ими стали механизмы нервной системы, появившейся у сложных, высокоорганизованных организмов.

Нервная система — это совокупность специальных структур, объединяющая и координирующая деятельность всех органов и систем организма в постоянном взаимодействии с внешней средой.

К центральной нервной системе относятся головной и спинной мозг. Головной мозг подразделяется на задний мозг ( и варолиев мост), ретикулярную формацию, подкорковые ядра, . Тела образуют серое вещество ЦНС, а их отростки (аксоны и дендриты) — белое вещество.

Общая характеристика нервной системы

Одной из функций нервной системы является восприятие различных сигналов (раздражителей) внешней и внутренней среды организма. Вспомним, что воспринимать разнообразные сигналы среды существования могут любые клетки с помощью специализированных клеточных рецепторов. Однако к восприятию ряда жизненно важных сигналов они не приспособлены и не могут мгновенно передать информацию другим клеткам, которые выполняют функцию регуляторов целостных адекватных реакций организма на действие раздражителей.

Воздействие раздражителей воспринимается специализированными сенсорными рецепторами. Примерами таких раздражителей могут быть кванты света, звуки, тепло, холод, механические воздействия (гравитация, изменение давления, вибрация, ускорение, сжатие, растяжение), а также сигналы сложной природы (цвет, сложные звуки, слово).

Для оценки биологической значимости воспринятых сигналов и организации на них адекватной ответной реакции в рецепторах нервной системы осуществляется их превращение - кодирование в универсальную форму сигналов, понятную нервной системе, — в нервные импульсы, проведение (передана) которых по нервным волокнам и путям в нервные центры необходимы для их анализа.

Сигналы и результаты их анализа используются нервной системой для организации ответных реакции на изменения во внешней или внутренней среде, регуляции и координации функции клеток и надклеточных структур организма. Такие ответные реакции осуществляются эффекторными органами. Наиболее частыми вариантами ответных реакций на воздействия являются моторные (двигательные) реакции скелетной или гладкой мускулатуры, изменение секреции эпителиальных (экзокринных, эндокринных) клеток, инициируемые нервной системой. Принимая прямое участие в формировании ответных реакций на изменения в среде существования, нервная система выполняет функции регуляции гомеостаза, обеспечения функционального взаимодействия органов и тканей и их интеграции в единый целостный организм.

Благодаря нервной системе осуществляется адекватное взаимодействие организма с окружающей средой не только через организацию ответных реакций эффекторными системами, но и через ее собственные психические реакции — эмоции, мотивации, сознание, мышление, память, высшие познавательные и творческие процессы.

Нервную систему подразделяют на центральную (головной и спинной мозг) и периферическую — нервные клетки и волокна за пределами полости черепной коробки и спинномозгового канала. Головной мозг человека содержит более 100 миллиардов нервных клеток (нейронов). Скопления нервных клеток, выполняющих или контролирующих одинаковые функции, формируют в центральной нервной системе нервные центры. Структуры мозга, представленные телами нейронов, формируют серое вещество ЦНС, а отростки этих клеток, объединяясь в проводящие пути, — белое вещество. Кроме этого, структурной частью ЦНС являются глиальные клетки, формирующие нейроглию. Число глиальных клеток приблизительно в 10 раз превышает число нейронов, и эти клетки составляют большую часть массы центральной нервной системы.

Нервную систему по особенностям выполняемых функций и строения делят на соматическую и автономную (вегетативную). К соматической относят структуры нервной системы, которые обеспечивают восприятие сенсорных сигналов преимущественно внешней среды через органы чувств, и контролируют работу поперечно-полосатой (скелетной) мускулатуры. К автономной (вегетативной) нервной системе относят структуры, которые обеспечивают восприятие сигналов преимущественно внутренней среды организма, регулируют работу сердца, других внутренних органов, гладкой мускулатуры, экзокринных и части эндокринных желез.

В центральной нервной системе принято выделять структуры, расположенные на различных уровнях, для которых свойственны специфические функции и роль в регуляции жизненных процессов. Среди них , базальные ядра, структуры ствола мозга, спинной мозг, периферическая нервная система.

Строение нервной системы

Нервную систему подразделяют на центральную и периферическую. К центральной нервной системе (ЦНС) относятся головной и спинной мозг, а к периферической — нервы, отходящие от центральной нервной системы к различным органам.

Рис. 1. Строение нервной системы

Рис. 2. Функциональное деление нервной системы

Значение нервной системы:

  • объединяет органы и системы организма в единое целое;
  • регулирует работу всех органов и систем организма;
  • осуществляет связь организма с внешней средой и приспособление его к условиям среды;
  • составляет материальную основу психической деятельности: речь, мышление, социальное поведение.

Структура нервной системы

Структурно-физиологической единицей нервной системы является - (рис. 3). Он состоит из тела (сомы), отростков (дендритов) и аксона. Дендриты сильно ветвятся и образуют множество синапсов с другими клетками, что определяет их ведущую роль в восприятии нейроном информации. Аксон начинается от тела клетки аксонным холмиком, являющимся генератором нервного импульса, который затем по аксону проводится к другим клеткам. Мембрана аксона в области синапса содержит специфические рецепторы, способные реагировать на различные медиаторы или нейромодуляторы. Поэтому на процесс выделения медиатора пресинаптическими окончаниями могут оказывать влияние другие нейроны. Также мембрана окончаний содержит большое число кальциевых каналов, через которые ионы кальция поступают внутрь окончания при его возбуждении и активизируют выделение медиатора.

Рис. 3. Схема нейрона (по И.Ф. Иванову): а — строение нейрона: 7 — тело (перикарион); 2 — ядро; 3 — дендриты; 4,6 — нейриты; 5,8 — миелиновая оболочка; 7- коллатераль; 9 — перехват узла; 10 — ядро леммоцита; 11 — нервные окончания; б — типы нервных клеток: I — униполярная; II — мультиполярная; III — биполярная; 1 — неврит; 2 -дендрит

Обычно в нейронах потенциал действия возникает в области мембраны аксонного холмика, возбудимость которой в 2 раза выше возбудимости других участков. Отсюда возбуждение распространяется по аксону и телу клетки.

Аксоны, помимо функции проведения возбуждения, служат каналами для транспорта различных веществ. Белки и медиаторы, синтезированные в теле клетки, органеллы и другие вещества могут перемещаться по аксону к его окончанию. Это перемещение веществ получило название аксонного транспорта. Существует два его вида — быстрый и медленный аксонный транспорт.

Каждый нейрон в центральной нервной системе выполняет три физиологические роли: воспринимает нервные импульсы с рецепторов или других нейронов; генерирует собственные импульсы; проводит возбуждение к другому нейрону или органу.

По функциональному значению нейроны подразделяют на три группы: чувствительные (сенсорные, рецепторные); вставочные (ассоциативные); моторные (эффекторные, двигательные).

Помимо нейронов в центральной нервной системе имеются глиальные клетки, занимающие половину объема мозга. Периферические аксоны также окружены оболочкой из глиальных клеток — леммоцитов (шванновские клетки). Нейроны и глиальные клетки разделены межклеточными щелями, которые сообщаются друге другом и образуют заполненное жидкостью межклеточное пространство нейронов и глии. Через это пространств происходит обмен веществами между нервными и глиальными клетками.

Клетки нейроглии выполняют множество функций: опорную, защитную и трофическую роль для нейронов; поддерживают определенную концентрацию ионов кальция и калия в межклеточном пространстве; разрушают нейромедиаторы и другие биологически активные вещества.

Функции центральной нервной системы

Центральная нервная система выполняет несколько функций.

Интегративная: организм животных и человека представляет собой сложную высокоорганизованную систему, состоящую из функционально связанных между собой клеток, тканей, органов и их систем. Эту взаимосвязь, объединение различных составляющих организма в единое целое (интеграция), их согласованное функционирование обеспечивает центральная нервная система.

Координирующая: функции различных органов и систем организма должны протекать согласованно, так как только при таком способе жизнедеятельности возможно поддерживать постоянство внутренней среды, равно как и успешно адаптировать к изменяющимся условиям окружающей среды. Координацию деятельности составляющих организм элементов осуществляет центральная нервная система.

Регулирующая: центральная нервная система регулирует все процессы, протекающие в организме, поэтому при ее участии происходят наиболее адекватные изменения работы различных органов, направленные на обеспечение той или иной его деятельности.

Трофическая: центральная нервная система осуществляет регуляцию трофики, интенсивности обменных процессов в тканях организма, что лежит в основе формирования реакций, адекватных происходящим изменениям во внутренней и внешней среде.

Приспособительная: центральная нервная система осуществляет связь организма с внешней средой путем анализа и синтеза поступающей к ней разнообразной информации от сенсорных систем. Это дает возможность перестраивать деятельность различных органов и систем в соответствии с изменениями среды. Она выполняет функции регулятора поведения, необходимого в конкретных условиях существования. Это обеспечивает адекватное приспособление к окружающему миру.

Формирование ненаправленного поведения: центральная нервная система формирует определенное поведение животного в соответствии с доминирующей потребностью.

Рефлекторная регуляция нервной деятельности

Приспособление процессов жизнедеятельности организма, его систем, органов, тканей к меняющимся условиям среды называется регуляцией. Регуляция, обеспечиваемая совместно нервной и гормональной системами, называется нервно-гормональной регуляцией. Благодаря нервной системе организм осуществляет свою деятельность по принципу рефлекса.

Основным механизмом деятельности центральной нервной системы является — это ответная реакция организма на действия раздражителя, осуществляемая с участием ЦНС и направленная на достижение полезного результата.

Рефлекс в переводе с латинского языка означает «отражение». Термин «рефлекс» был впервые предложен чешским исследователем И.Г. Прохаской, который развил учение об отражательных действиях. Дальнейшее становление рефлекторной теории связано с именем И.М. Сеченова. Он полагал, что все бессознательное и сознательное совершается по типу рефлекса. Но тогда еще не существовало методов объективной оценки деятельности мозга, которые могли бы подтвердить это предположение. Позднее объективный метод оценки деятельности мозга был разработан академиком И.П. Павловым, и он получил название метода условных рефлексов. С помощью этого метода ученый доказал, что в основе высшей нервной деятельности животных и человека лежат условные рефлексы, формирующиеся на базе безусловных рефлексов за счет образования временных связей. Академик П.К. Анохин показал, что все многообразие деятельности животных и человека осуществляется на основе концепции функциональных систем.

Морфологической основой рефлекса является , состоящая из нескольких нервных структур, которая обеспечивает осуществление рефлекса.

В образовании рефлекторной дуги участвуют три вида нейронов: рецепторные (чувствительные), промежуточные (вставочные), двигательные (эффекторные) (рис. 6.2). Они объединяются в нейронные цепи.

Рис. 4. Схема регуляции но принципу рефлекса. Рефлекторная дуга: 1 — рецептор; 2 — афферентный путь; 3 — нервный центр; 4 — эфферентный путь; 5 — рабочий орган (любой орган организма); МН — моторный нейрон; М — мышца; КН — командный нейрон; СН — сенсорный нейрон, МодН — модуляторный нейрон

Дендрит ренепторного нейрона контактирует с рецептором, его аксон направляется в ЦНС и взаимодействует с вставочным нейроном. От вставочного нейрона аксон идет к эффекторному нейрону, а его аксон направляется на периферию к исполнительному органу. Таким образом и формируется рефлекторная дуга.

Рецепторные нейроны расположены на периферии и во внутренних органах, а вставочные и двигательные находятся в ЦНС.

В рефлекторной дуге различают пять звеньев: рецептор, афферентный (или центростремительный) путь, нервный центр, эфферентный (или центробежный) путь и рабочий орган (или эффектор).

Рецептор — специализированное образование, воспринимающее раздражение. Рецептор состоит из специализированных высокочувствительных клеток.

Афферентное звено дуги представляет собой рецепторный нейрон и проводит возбуждение от рецептора к нервному центру.

Нервный центр образован большим числом вставочных и двигательных нейронов.

Это звено рефлекторной дуги состоит из совокупности нейронов, расположенных в различных отделах ЦНС. Нервный центр воспринимает импульсы от рецепторов по афферентному пути, осуществляет анализ и синтез этой информации, затем передает сформированную программу действий по эфферентным волокнам к периферическому исполнительному органу. А рабочий орган осуществляет свойственную ему деятельность (мышца сокращается, железа выделяет секрет и т.д.).

Специальное звено обратной афферентации воспринимает параметры совершенного рабочим органом действия и передает эту информацию в нервный центр. Нервный центр является акцептором действия звена обратной афферентации и воспринимает информацию с рабочего органа о совершенном действии.

Время от начала действия раздражителя на рецептор до появления ответной реакции называется временем рефлекса.

Все рефлексы у животных и человека подразделяются на безусловные и условные.

Безусловные рефлексы - врожденные, наследственно передающиеся реакции. Безусловные рефлексы осуществляются через уже сформированные в организме рефлекторные дуги. Безусловные рефлексы видоспецифичны, т.е. свойственны всем животным данного вида. Они постоянны в течение жизни и возникают в ответ на адекватные раздражения рецепторов. Безусловные рефлексы классифицируются и по биологическому значению: пищевые, оборонительные, половые, локомоторные, ориентировочные. По расположению рецепторов эти рефлексы подразделяются: на экстероцептивные (температурные, тактильные, зрительные, слуховые, вкусовые и др.), интероцептивные (сосудистые, сердечные, желудочный, кишечный и пр.) и проприоцептивные (мышечные, сухожильные и пр.). По характеру ответной реакции — на двигательные, секреторные и др. По нахождению нервных центров, через которые осуществляется рефлекс, — на спинальные, бульбарные, мезэнцефальные.

Условные рефлексы - рефлексы, приобретенные организмом в процессе его индивидуальной жизни. Условные рефлексы осуществляются через вновь сформированные рефлекторные дуги на базе рефлекторных дуг безусловных рефлексов с образованием между ними временной связи в коре больших полушарий.

Рефлексы в организме осуществляются с участием желез внутренней секреции и гормонов.

В основе современных представлений о рефлекторной деятельности организма находится понятие полезного приспособительного результата, для достижения которого и совершается любой рефлекс. Информация о достижении полезного приспособительного результата поступает в центральную нервную систему по звену обратной связи в виде обратной афферентации, которая является обязательным компонентом рефлекторной деятельности. Принцип обратной афферентации в рефлекторной деятельности был разработан П. К. Анохиным и основан на том, что структурной основой рефлекса является не рефлекторная дуга, а рефлекторное кольцо, включающее следующие звенья: рецептор, афферентный нервный путь, нервный центр, эфферентный нервный путь, рабочий орган, обратная афферентация.

При выключении любого звена рефлекторного кольца рефлекс исчезает. Следовательно, для осуществления рефлекса необходима целостность всех звеньев.

Свойства нервных центров

Нервные центры обладают рядом характерных функциональных свойств.

Возбуждение в нервных центрах распространяется односторонне от рецептора к эффектору, что связано со способностью проводить возбуждение только от пресинаптической мембраны к постсинаптической.

Возбуждение в нервных центрах проводится медленнее, чем по нервному волокну, в результате замедления проведения возбуждения через синапсы.

В нервных центрах может происходить суммация возбуждений.

Можно выделить два основных способа суммации: временную и пространственную. При временной суммации несколько импульсов возбуждения приходят к нейрону через один синапс, суммируются и генерируют в нем потенциал действия, а пространственная суммации проявляется в случае поступления импульсов к одному нейрону через разные синапсы.

В них происходит трансформация ритма возбуждения, т.е. уменьшение или увеличение количества импульсов возбуждения, выходящих из нервного центра по сравнению с количеством импульсов, приходящих к нему.

Нервные центры очень чувствительны к недостатку кислорода и действию различных химических веществ.

Нервные центры, в отличие от нервных волокон, способны к быстрому утомлению. Синаптическая утомляемость при длительной активации центра выражается в снижении числа постсинаптических потенциалов. Это обусловлено расходованием медиатора и накоплением метаболитов, закисляющих среду.

Нервные центры находятся в состоянии постоянного тонуса, обусловленного непрерывным поступлением определенного числа импульсов от рецепторов.

Нервным центрам свойственна пластичность — способность увеличивать свои функциональные возможности. Это свойство может быть обусловлено синаптическим облегчением — улучшение проведения в синапсах после короткого раздражения афферентных путей. При частом использовании синапсов ускоряется синтез рецепторов и медиатора.

Наряду с возбуждением в нервном центре происходят процессы торможения.

Координационная деятельность ЦНС и ее принципы

Одной из важных функций центральной нервной системы является координационная функция, которую называют также координационной деятельностью ЦНС. Под ней понимают регуляцию распределения возбуждения и торможения в нейронных структурах, а также взаимодействие между нервными центрами, которые обеспечивают эффективное осуществление рефлекторных и произвольных реакций.

Примером координационной деятельности ЦНС могут быть реципрокные отношения между центрами дыхания и глотания, когда во время глотания центр дыхания затормаживается, надгортанник закрывает вход в гортань и предупреждает попадание в дыхательные пути пищи или жидкости. Координационная функция ЦНС принципиально важна для осуществления сложных движений, осуществляемых при участии множества мышц. Примерами таких движений могут быть артикуляция речи, акт глотания, гимнастические движения, требующие согласованного сокращения и расслабления множества мышц.

Принципы координационной деятельности

  • Реципрокность — взаимное торможение антагонистических групп нейронов (мотонейроны сгибателей и разгибателей)
  • Конечный нейрон — активация эфферентного нейрона с различных рецептивных полей и конкурентная борьба между различными афферентными импульсациями за данный мотонейрон
  • Переключения — процесс перехода активности с одного нервного центра на нервный центр антагонист
  • Индукция — смена возбуждения торможением или наоборот
  • Обратная связь — механизм, обеспечивающий необходимость сигнализации от рецепторов исполнительных органов для успешной реализации функции
  • Доминанта — стойкий главенствующий очаг возбуждения в ЦНС, подчиняющий себе функции других нервных центров.

В основе координационной деятельности центральной нервной системы лежит ряд принципов.

Принцип конвергенции реализуется в конвергентных цепях нейронов, в которых на один из них (обычно эфферентный) сходятся или конвергируют аксоны ряда других. Конвергенция обеспечивает поступление к одному и тому же нейрону сигналов от различных нервных центров или рецепторов различных модальностей (различных органов чувств). На основе конвергенции самые разные раздражители могут вызвать однотипную реакцию. Например, сторожевой рефлекс (поворот глаз и головы — настораживание) может быть вызван и световым, и звуковым, и тактильным воздействием.

Принцип общего конечного пути вытекает из принципа конвергенции и близок по своей сути. Под ним понимают возможность осуществления одной и той же реакции, запускаемой конечным в иерархической нервной цепи эфферентным нейроном, на который конвергируют аксоны множества других нервных клеток. Примером классического конечного пути являются мотонейроны передних рогов спинного мозга или двигательных ядер черепных нервов, которые своими аксонами непосредственно иннервируют мышцы. Одна и та же двигательная реакция (например сгибание руки) может запускаться путем поступления к этим нейронам импульсов от пирамидных нейронов первичной двигательной коры, нейронов ряда моторных центров ствола мозга, интернейронов спинного мозга, аксонов чувствительных нейронов спинальных ганглиев в ответ на действие сигналов, воспринятых разными органами чувств (на световое, звуковое, гравитационное, болевое или механическое воздействие).

Принцип дивергенции реализуется в дивергентных цепях нейронов, в которых один из нейронов имеет ветвящийся аксон, и каждая из ветвей образует синапс с другой нервной клеткой. Эти цепи выполняют функции одновременной передачи сигналов от одного нейрона на многие другие нейроны. Благодаря дивергентным связям происходит широкое распространение (иррадиация) сигналов и быстрое вовлечение в ответную реакцию многих центров, расположенных на разных уровнях ЦНС.

Принцип обратной связи (обратной афферентации) заключается в возможности передачи по афферентным волокнам информации об осуществляемой реакции (например, о движении от проприорецепторов мышц) обратно в нервный центр, который ее запускал. Благодаря обратной связи формируется замкнутая нейронная цепь (контур), через которую можно контролировать ход исполнения реакции, регулировать силу, продолжительность и другие параметры реакции, если они не были реализованы.

Участие обратной связи можно рассмотреть на примере реализации сгибательного рефлекса, вызываемого механическим воздействием на рецепторы кожи (рис. 5). При рефлекторном сокращении мышцы-сгибателя изменяется активность проприорецепторов и частота посылки нервных импульсов по афферентным волокнам к а-мотонейронам спинного мозга, иннервирующим эту мышцу. В результате формируется замкнутый контур регулирования, в котором роль канала обратной связи выполняют афферентные волокна, передающие информацию о сокращении в нервные центры от рецепторов мышц, а роль канала прямой связи — эфферентные волокна мотонейронов, идущие к мышцам. Таким образом, нервный центр (его мотонейроны) получает информацию об изменении состояния мышцы, вызванном передачей импульсов по двигательным волокнам. Благодаря обратной связи образуется своеобразное регуляторное нервное кольцо. Поэтому некоторые авторы предпочитают вместо термина «рефлекторная дуга» применять термин «рефлекторное кольцо».

Наличие обратной связи имеет важное значение в механизмах регуляции кровообращения, дыхания, температуры тела, поведенческих и других реакций организма и рассматривается далее в соответствующих разделах.

Рис. 5. Схема обратной связи в нейронных цепях простейших рефлексов

Принцип реципрокных отношений реализуется при взаимодействии между нервными центрами-антагонистами. Например, между группой моторных нейронов, контролирующих сгибание руки, и группой моторных нейронов, контролирующих разгибание руки. Благодаря реципрокным отношениям возбуждение нейронов одного из антагонистических центров сопровождается торможением другого. В приведенном примере реципрокные отношения между центрами сгибания и разгибания проявятся тем, что во время сокращения мышц- сгибателей руки будет происходить эквивалентное расслабление разгибателей, и наоборот, что обеспечивает плавность сгибательных и разгибательных движений руки. Реципрокные отношения осуществляются за счет активации нейронами возбужденного центра тормозных вставочных нейронов, аксоны которых образуют тормозные синапсы на нейронах антагонистического центра.

Принцип доминанты также реализуется на основе особенностей взаимодействия между нервными центрами. Нейроны доминирующего, наиболее активного центра (очага возбуждения) обладают стойкой высокой активностью и подавляют возбуждение в других нервных центрах, подчиняя их своему влиянию. Более того, нейроны доминирующего центра притягивают к себе афферентные нервные импульсы, адресуемые к другим центрам, и усиливают свою активность за счет поступления этих импульсов. Доминантный центр может длительно находиться в состоянии возбуждения без признаков утомления.

Примером состояния, обусловленного наличием в центральной нервной системе доминантного очага возбуждения, может служить состояние после пережитого человеком важного для него события, когда все его мысли и действия так или иначе становятся связанными с этим событием.

Свойства доминанты

  • Повышенная возбудимость
  • Стойкость возбуждения
  • Инертность возбуждения
  • Способность к подавлению субдоминантных очагов
  • Способность к суммированию возбуждений

Рассмотренные принципы координации могут использоваться, в зависимости от координируемых ЦНС процессов порознь или вместе в различных сочетаниях.

Вся нервная система делится на центральную и периферическую. К центральной нервной системе относится головной и спинной мозг. От них по всему телу расходятся нервные волокна - периферическая нервная система. Она соединяет мозг с органами чувств и с исполнительными органами - мышцами и железами.

Все живые организмы обладают способностью реагировать на физические и химические изменения в окружающей среде. Стимулы внешней среды (свет, звук, запах, прикосновение и т.п.) преобразуются специальными чувствительными клетками (рецепторами) в нервные импульсы - серию электрических и химических изменений в нервном волокне. Нервные импульсы передаются по чувствительным (афферентным) нервным волокнам в спинной и головной мозг. Здесь вырабатываются соответствующие командные импульсы, которые передаются по моторным (эфферентным) нервным волокнам к исполнительным органам (мышцам, железам). Эти исполнительные органы называются эффекторами. Основная функция нервной системы - интеграция внешнего воздействия с соответствующей приспособительной реакцией организма.

Структурной единицей нервной системы является нервная клетка - нейрон. Он состоит из тела клетки, ядра, разветвленных отростков - дендритов - по ним нервные импульсы идут к телу клетки -и одного длинного отростка - аксона -по нему нервный импульс проходит от тела клетки к другим клеткам или эффекторам. Отростки двух соседних нейронов соединяются особым образованием - синапсом. Он играет существенную роль в фильтрации нервных импульсов: пропускает одни импульсы и задерживает другие. Нейроны связаны друг с другом и осуществляют объединенную деятельность.

Центральная нервная система состоит из головного и спинного мозга. Головной мозг подразделяется на ствол мозга и передний мозг. Ствол мозга состоит из продолговатого мозга и среднего мозга. Передний мозг подразделяется на промежуточный и конечный.

Все отделы мозга имеют свои функции. Так, промежуточный мозг состоит из гипоталамуса - центра эмоций и витальных потребностей (голода, жажды, либидо) , лимбической системы (ведающей эмоционально-импульсивным поведением) и таламуса (осуществляющего фильтрацию и первичную обработку чувственной информации).



У человека особенно развита кора больших полушарий - орган высших психических функций. Она имеет толщину 3- мм, а общая площадь ее в среднем равна 0,25 кв.м. Кора состоит из шести слоев. Клетки коры мозга связаны между собой. Их насчитывается около 15 миллиардов. Различные нейроны коры имеют свою специфическую функцию. Одна группа нейронов выполняет функцию анализа (дробления, расчленения нервного импульса), другая группа осуществляет синтез, объединяет импульсы, идущие от различных органов чувств и отделов мозга (ассоциативные нейроны). Существует система нейронов, удерживающая следы от прежних воздействий и сличающая новые воздействия с имеющимися следами.

По особенностям микроскопического строения всю кору мозга делят на несколько десятков структурных единиц - полей, а по расположению его частей - на четыре доли: затылочную, височную, теменную и лобную. Кора головного мозга человека является целостно работающим органом, хотя отдельные его части (области) функционально специализированы (например, затылочная область коры осуществляет сложные зрительные функции, лобно-височная - речевые, височная -слуховые). Наибольшая часть двигательной зоны коры головного мозга человека связана с регуляцией движения органа труда (руки) и органов речи.

Все отделы коры мозга взаимосвязаны; они соединены и с нижележащими отделами мозга, которые осуществляют важнейшие жизненные функции. Подкорковые образования, регулируя врожденную безусловно-рефлекторную деятельность, являются областью тех процессов, которые субъективно ощущаются в виде эмоций (они, по выражению И.П.Павлова, являются “источником силы для корковых клеток”).

В мозгу человека имеются все те структуры, которые возникали на различных этапах эволюции живых организмов. Они содержат в себе “опыт”, накопленный в процессе всего эволюционного развития. Это свидетельствует об общем происхождении человека и животных. По мере усложнения организации животных на различных ступенях эволюции значение коры головного мозга все более и более возрастает.

Основным механизмом нервной деятельности является рефлекс. Рефлекс - реакция организма на внешнее или внутреннее воздействие при посредстве центральной нервной системы. Термин “рефлекс”, был введен в физиологию французским ученым Рене Декартом в XVII веке. Но для объяснения психической деятельности он был применен лишь в 1863 году основоположником русской материалистической физиологии М.И.Сеченовым. Развивая учение И.М.Сеченова, И.П.Павлов экспериментально исследовал особенности функционирования рефлекса.

Все рефлексы делятся на две группы: условные и безусловные.

Безусловные рефлексы -врожденные реакции организма на жизненно важные раздражители (пищу, опасность и т.п.). Они не требуют каких-либо условий для своей выработки (например, рефлекс мигания, выделение слюны при виде пищи). Безусловные рефлексы представляют собой природный запас готовых, стереотипных реакций организма. Они возникли в результате длительного эволюционного развития данного вида животных. Безусловные рефлексы одинаковы у всех особей одного вида; это физиологический механизм инстинктов. Но поведение высших животных и человека характеризуется не только врожденными, т.е. безусловными реакциями, но и такими реакциями, которые приобретены данным организмом в процессе его индивидуальной жизнедеятельности, т.е. условными рефлексами.

Условные рефлексы - физиологический механизм приспособления организма к изменяющимся условиям среды. Условные рефлексы - это такие реакции организма, которые не являются врожденными, а вырабатываются в различных прижизненных условиях. Они возникают при условии постоянного предшествования различных явлений тем, которые жизненно важны для животного. Если же связь между этими явлениями исчезает, то условный рефлекс угасает (например, рычание тигра в зоопарке, не сопровождаясь его нападением, перестает пугать других животных).

Мозг не идет на поводу только текущих воздействий. Он планирует, предвосхищает будущее, осуществляет опережающее отражение будущего. В этом состоит самая главная особенность его работы. Действие должно достичь определенного будущего результата - цели. Без предварительного моделирования мозгом этого результата невозможна регуляция поведения. Итак, деятельность мозга является отражением внешних воздействий как сигналов для тех или иных приспособительных действий. Механизмом наследственного приспособления являются безусловные рефлексы, а механизмом идивидуально изменчивого приспособления являются условные рефлексы, сложные комплексы функциональных систем.

Нейрон, виды нейронов

Нейрон (от греч. nйuron - нерв) - это структурно-функциональная единица нервной системы. Эта клетка имеет сложное строение, высоко специализирована и по структуре содержит ядро, тело клетки и отростки. В организме человека насчитывается более ста миллиардов нейронов. Сложность и многообразие функций нервной системы определяются взаимодействием между нейронами, которое, в свою очередь, представляют собой набор различных сигналов, передаваемых в рамках взаимодействия нейронов с другими нейронами или мышцами и железами. Сигналы испускаются и распространяются с помощью ионов, генерирующих электрический заряд, который движется вдоль нейрона.

Виды нейронов.

По локализации: центральные (расположены в центральной нервной системе); периферические (расположены вне центральной нервной системы - в спинномозговых, черепно-мозговых ганглиях, в вегетативных ганглиях, в сплетениях и внутриорганно).

По функциональному признаку: рецепторные (афферентные, чувствительные) - это те нервные клетки, по которым импульсы идут от рецепторов в центральную нервную систему. Они делятся на: первичные афферентные нейроны - их тела расположены в спинальных ганглиях, они имеют непосредственную связь с рецепторами и вторичные афферентные нейроны - их тела лежат в зрительных буграх, они передают импульсы в вышележащие отделы, они не связаны с рецепторами, получают импульсы от других нейронов; эфферентные нейроны передают импульсы из центральной нервной системы к другим органам. Мотонейроны расположены в передних рогах спинного мозга (альфа, бетта, гамма - мотонейроны) - обеспечивают двигательную ответную реакцию. Нейроны вегетативной нервной системы: преганглионарные (их тела лежат в боковых рогах спинного мозга), постганглионарные (их тела - в вегетативных ганглиях); вставочные (интернейроны) - обеспечивают передачу импульсов с афферентных на эфферентные нейроны. Они составляют основную массу серого вещества головного мозга, широко представлены в головном мозге и его коре. Виды вставочных нейронов: возбуждающие и тормозящие нейроны.

Разработка урока по теме "Строение и значение нервной системы. Нервная регуляция", знакомит учащихся со строением и классификацией нервной системы, определяет взаимосвязь нервной системы и работой внутренних органов. Ребята учатся самостоятельно работать с текстом учебника, логически мыслить и формировать результаты логических операций в устной и письменной форме.

Скачать:


Предварительный просмотр:

Строение и значение нервной системы. Нервная регуляция.

Цели: усвоить строение и классификацию нервной системы; строение нервной ткани, нейрона, серого и белого вещества, нервов, нервных узлов; сущность понятий «рефлекс», «рефлекторная дуга» и их классификацию. Формировать понятия: самостоятельно работать с текстом учебника, извлекать из него нужную информацию; логически мыслить и формировать результаты мыслительных операций в устной и письменной форме.

Задачи: показать ведущую роль нервной системы в регуляции работы органов и обеспечения единой системы организма; сформировать представление о строении и функциях спинного мозга; показать связь понятий «рефлекс» и «функции спинного мозга»; вырабатывать умения применять знания для объяснения явлений.

Оборудование: таблицы: схема строения нервной системы, «Нервные клетки и схема рефлекторной дуги»; видеофильм «Рефлекторная дуга»

Ход урока:

  1. Организационный момент.
  2. Биологический диктант.

Учащиеся дают определения понятиям с предыдущего урока.

  1. Изучение нового материала.
  1. Значение нервной системы.

Беседа, обобщающая знания учащихся, полученные на разных уроках и в разных статьях учебника «Биология: человек».

На доске записаны функции нервной системы. Учащиеся должны подтвердить каждый пункт примерами, фактами из ранее изученных тем.

  1. Анатомическая классификация отделов нервной системы.

Рассказ с элементами беседы. Составление схемы «Нервная система»

  1. Спинной мозг

Строение спинного мозга (объяснение учителя)

Спинной мозг лежит в позвоночном канале и у взрослых представляет собой длинный (45 см у мужчин и 41-42 см у женщин), несколько сплюснутый спереди назад цилиндрический тяж, который вверху непосредственно переходит в продолговатый мозг, а внизу оканчивается коническим заострением на уровне II поясничного позвонка. Знание этого факта имеет практическое значение (чтобы не повредить спинной мозг при поясничном проколе с целью взятия спинномозговой жидкости или с целью спинномозговой анестезии, надо вводить иглу шприца между остистыми отростками III и IV поясничных позвонков).

Внутреннее строение спинного мозга. Спинной мозг состоит из серого вещества, содержащего нервные клетки, и белого вещества, слагающегося из миелиновых нервных волокон. Серое вещество , заложено внутри спинного мозга и окружено со всех сторон белым веществом. Серое вещество образует две вертикальные колонны, помещенные в правой и левой половинах спинного мозга. В середине его заложен узкий центральный канал, спинного мозга, проходящий во всю длину последнего и содержащий спинномозговую жидкость. Белое вещество состоит из нервных отростков, которые составляют три системы нервных волокон:

  1. Короткие пучки ассоциативных волокон, соединяющих участки спинного мозга на различных уровнях (афферентные и вставочные нейроны).
  2. Длинные центростремительные (чувствительные, афферентные).
  3. Длинные центробежные (двигательные, эфферентные).

Функции спинного мозга (Рассказ учителя, демонстрация безусловного коленного рефлекса, изображение рефлекторной дуги коленного рефлекса)

Рефлекс – непроизвольный акт, быстрая ответная реакция организма на действие раздражителя, осуществляемая с участием центральной нервной системы и под ее контролем. Это основная форма нервной деятельности организма многоклеточных животных, включая человека.

Из курса зоологии вам известно, что организм рождается с большим набором готовых, врожденных рефлексов. Часть рефлексов вырабатывается в течение жизни при определенных условиях действия среды. Как называются такие рефлексы (безусловные и условные соответственно).

Механизм осуществления рефлекса рассмотрим на примере коленного рефлекса. Во всех органах тела имеются рецепторы – чувствительные нервные окончания, преобразующие раздражения в нервные импульсы. Имеются они и в мышце бедра. Если ударить по сухожильной связке чуть ниже колена, то мышца натягивается и в ее рецепторах возникает возбуждение, которое передается по чувствительному (афферентному) нерву на двигательный (эфферентный), тело которого находится в спинном мозге. По этому нейрону нервный импульс достигает той же мышцы (рабочего органа), и она сокращается, разгибая ногу в коленном суставе. Скопления нейронов центральной нервной системы, вызывающих определенное рефлекторное действие, называют рефлекторными центрами этих рефлексов. Коленный рефлекс возникает при раздражении не одного, а многих рецепторов, расположенных в одной области тела – рефлексогенной зоны (рецептивное поле) .

Таким образом, материальной основой рефлекса является рефлекторная дуга – цепочка нейронов, образующая путь нервного импульса при осуществлении рефлекса.

Используя этот пример, заполните по памяти таблицу «Звенья рефлекторной дуги»:

Звенья рефлекторной дуги

Функции звеньев

1. Рецептор

Преобразование раздражения в нервные импульсы

2. Чувствительный (афферентный, центростремительный) нейрон

Проведение импульса в ЦНС

3. Центральная нервная система (спинной или головной мозг) ЦНС

Анализ, обработка поступивших сигналов и передача их на двигательный нейрон

4. Исполнительный (эфферентный, центробежный) нейрон

Проведение импульса из ЦНС к рабочему органу

5. Эффектор – нервное окончание в исполнительном органе

Ответная реакция - эффект (сокращение у мышцы, секреция у железы)

Просмотр видеофильма «Рефлекторная дуга»

  1. Связь спинного и головного мозга (объяснение учителя)
  1. Закрепление знаний.

Фронтальная письменная работа.

Допишите определения.

Нервные узлы – это скопления______________

Нервы – это скопления ___________________

Рефлекс – это__________________ организма на _____________________, которая осуществляется с помощью _______________.

1. Что называют рефлексом?
2. В темноте, заходя в свою комнату, вы безошибочно определяете местонахождение выключателя и зажигаете свет. Безусловным или условным рефлексом является ваше движение в сторону выключателя? Ответ обоснуйте.
3. Сколько звеньев включает рефлекторная дуга?
4. Какими анатомическими структурами представлен каждый отдел рефлекторной дуги?
5. Возможно ли осуществление рефлекса при нарушении одного из звеньев рефлекторной дуги? Почему?
6. У некоторых людей коленный рефлекс бывает слабо выражен. Чтобы его усилить, предлагают сцепить руки перед грудью и тянуть их в разные стороны. Почему это приводит к усилению рефлекса?

Домашнее задание Учебник А.Г. Драгомилова, Р.Д. Маша § 46, 49. Рабочая тетрадь №2 задания 150-153, 158, 181.


Похожие статьи

© 2024 rsrub.ru. О современных технологиях кровли. Строительный портал.