Mi az a másodfokú egyenlet. Másodfokú egyenletek

Az „Egyenletek megoldása” téma folytatásaként a cikk anyaga bemutatja a másodfokú egyenleteket.

Nézzünk meg mindent részletesen: a másodfokú egyenlet lényegét és jelölését, állítsuk be a hozzá tartozó kifejezéseket, elemezzük a hiányos és teljes egyenletek megoldási sémáját, ismerkedjünk meg a gyökök képletével és a diszkriminánssal, hozzunk létre kapcsolatokat a gyökök és együtthatók között, ill. természetesen gyakorlati példák vizuális megoldását adjuk.

Yandex.RTB R-A-339285-1

Másodfokú egyenlet, típusai

1. definíció

Másodfokú egyenletígy van felírva az egyenlet a x 2 + b x + c = 0, ahol x– változó, a , b és c néhány szám, míg a nem nulla.

A másodfokú egyenleteket gyakran másodfokú egyenleteknek is nevezik, mivel valójában a másodfokú egyenlet egy másodfokú algebrai egyenlet.

Mondjunk egy példát az adott definíció illusztrálására: 9 x 2 + 16 x + 2 = 0 ; 7, 5 x 2 + 3, 1 x + 0, 11 = 0 stb. másodfokú egyenletek.

2. definíció

Számok a , b és c a másodfokú egyenlet együtthatói a x 2 + b x + c = 0, míg az együttható a nevezzük az első, vagy idősebb, vagy együttható x 2, b - a második együttható, vagy együttható at x, a c szabad tagnak nevezték.

Például a másodfokú egyenletben 6 x 2 - 2 x - 11 = 0 a legmagasabb együttható 6, a második együttható az − 2 , és a szabad kifejezés egyenlő − 11 . Figyeljünk arra, hogy amikor az együtthatók bés/vagy c negatív, akkor a gyorsított alakot használjuk 6 x 2 - 2 x - 11 = 0, de nem 6 x 2 + (− 2) x + (− 11) = 0.

Tisztázzuk ezt a szempontot is: ha az együtthatók aés/vagy b egyenlő 1 vagy − 1 , akkor nem vehetnek kifejezetten részt a másodfokú egyenlet megírásában, amit a jelzett numerikus együtthatók felírásának sajátosságai magyaráznak. Például a másodfokú egyenletben y 2 − y + 7 = 0 a szenior együttható 1, a második pedig az − 1 .

Redukált és nem redukált másodfokú egyenletek

Az első együttható értéke szerint a másodfokú egyenleteket redukáltra és nem redukáltra osztjuk.

3. definíció

Csökkentett másodfokú egyenlet egy másodfokú egyenlet, ahol a vezető együttható 1. A vezető együttható egyéb értékei esetén a másodfokú egyenlet redukálatlan.

Íme néhány példa: az x 2 − 4 · x + 3 = 0, x 2 − x − 4 5 = 0 másodfokú egyenletek redukálva vannak, amelyek mindegyikében a vezető együttható 1 .

9 x 2 - x - 2 = 0- redukálatlan másodfokú egyenlet, ahol az első együttható különbözik 1 .

Bármely redukálatlan másodfokú egyenlet redukált egyenletté alakítható, ha mindkét részét elosztjuk az első együtthatóval (ekvivalens transzformáció). A transzformált egyenletnek ugyanazok a gyökerei lesznek, mint az adott nem redukált egyenletnek, vagy egyáltalán nem lesz gyöke.

Egy konkrét példa megfontolása lehetővé teszi számunkra, hogy egyértelműen demonstráljuk az átmenetet a redukálatlan másodfokú egyenletről a redukáltra.

1. példa

Adott a 6 x 2 + 18 x − 7 = 0 egyenlet . Az eredeti egyenletet redukált formára kell konvertálni.

Döntés

A fenti séma szerint az eredeti egyenlet mindkét részét elosztjuk a 6 vezető együtthatóval. Akkor kapjuk: (6 x 2 + 18 x - 7) : 3 = 0:3, és ez ugyanaz, mint: (6 x 2) : 3 + (18 x) : 3 - 7: 3 = 0és tovább: (6:6) x 2 + (18:6) x − 7: 6 = 0 . Innen: x 2 + 3 x - 1 1 6 = 0 . Így az adott egyenletet kapjuk.

Válasz: x 2 + 3 x - 1 1 6 = 0 .

Teljes és nem teljes másodfokú egyenletek

Térjünk rá a másodfokú egyenlet definíciójára. Ebben azt határoztuk meg a ≠ 0. Hasonló feltétel szükséges az egyenlethez a x 2 + b x + c = 0 pontosan négyzet alakú volt, mivel a = 0 lényegében lineáris egyenletté alakul át b x + c = 0.

Abban az esetben, ha az együtthatók bés c nullával egyenlőek (ami külön-külön és együttesen is lehetséges), a másodfokú egyenletet hiányosnak nevezzük.

4. definíció

Hiányos másodfokú egyenlet egy másodfokú egyenlet a x 2 + b x + c \u003d 0, ahol legalább az egyik együttható bés c(vagy mindkettő) nulla.

Teljes másodfokú egyenlet egy másodfokú egyenlet, amelyben az összes numerikus együttható nem egyenlő nullával.

Beszéljük meg, hogy a másodfokú egyenletek típusait miért adják pontosan ilyen elnevezéssel.

Ha b = 0, a másodfokú egyenlet a következő alakot veszi fel a x 2 + 0 x + c = 0, ami megegyezik a a x 2 + c = 0. Nál nél c = 0 a másodfokú egyenletet úgy írjuk fel a x 2 + b x + 0 = 0, ami egyenértékű a x 2 + b x = 0. Nál nél b = 0és c = 0 az egyenlet alakját veszi fel a x 2 = 0. Az általunk kapott egyenletek abban különböznek a teljes másodfokú egyenlettől, hogy bal oldaluk nem tartalmaz sem x változós tagot, sem szabad tagot, vagy mindkettőt egyszerre. Valójában ez a tény adta a nevet az ilyen típusú egyenleteknek - hiányos.

Például x 2 + 3 x + 4 = 0 és − 7 x 2 − 2 x + 1, 3 = 0 teljes másodfokú egyenletek; x 2 \u003d 0, − 5 x 2 = 0; 11 x 2 + 2 = 0, − x 2 − 6 x = 0 nem teljes másodfokú egyenletek.

Hiányos másodfokú egyenletek megoldása

A fent megadott definíció lehetővé teszi a hiányos másodfokú egyenletek következő típusainak megkülönböztetését:

  • a x 2 = 0, együtthatók felelnek meg egy ilyen egyenletnek b = 0és c = 0;
  • a x 2 + c = 0 b \u003d 0 esetén;
  • a x 2 + b x = 0 c = 0 esetén.

Tekintsük egymás után az egyes nem teljes másodfokú egyenlettípusok megoldását.

Az a x 2 \u003d 0 egyenlet megoldása

Mint fentebb említettük, egy ilyen egyenlet megfelel az együtthatóknak bés c, egyenlő nullával. Az egyenlet a x 2 = 0 ekvivalens egyenletté alakítható át x2 = 0, amelyet úgy kapunk, hogy az eredeti egyenlet mindkét oldalát elosztjuk a számmal a, nem egyenlő nullával. A nyilvánvaló tény az, hogy az egyenlet gyökere x2 = 0 nulla, mert 0 2 = 0 . Ennek az egyenletnek nincs más gyöke, amit a fokozat tulajdonságai magyaráznak: tetszőleges számra p , nem egyenlő nullával, az egyenlőtlenség igaz p2 > 0, amiből az következik, hogy mikor p ≠ 0 egyenlőség p2 = 0 soha nem fogják elérni.

5. definíció

Így az a x 2 = 0 nem teljes másodfokú egyenlethez van egy egyedi gyök x=0.

2. példa

Például oldjunk meg egy nem teljes másodfokú egyenletet − 3 x 2 = 0. Ez egyenértékű az egyenlettel x2 = 0, egyetlen gyökere az x=0, akkor az eredeti egyenletnek egyetlen gyöke - nulla.

A megoldást a következőképpen foglaljuk össze:

− 3 x 2 \u003d 0, x 2 = 0, x = 0.

Az a x 2 + c \u003d 0 egyenlet megoldása

A következő a sorban a hiányos másodfokú egyenletek megoldása, ahol b \u003d 0, c ≠ 0, azaz a következő alakú egyenletek a x 2 + c = 0. Alakítsuk át ezt az egyenletet úgy, hogy átvisszük a tagot az egyenlet egyik oldaláról a másikra, az előjelet az ellenkezőjére változtatjuk, és az egyenlet mindkét oldalát elosztjuk egy olyan számmal, amely nem egyenlő nullával:

  • elviselni c jobb oldalra, ami megadja az egyenletet a x 2 = − c;
  • osszuk el az egyenlet mindkét oldalát a, eredményül kapjuk az x = - c a .

Transzformációink ekvivalensek, illetve a kapott egyenlet is ekvivalens az eredetivel, és ez a tény lehetővé teszi az egyenlet gyökereire vonatkozó következtetés levonását. Miből vannak az értékek aés c a kifejezés értékétől függ - c a: lehet mínusz jele (például ha a = 1és c = 2, akkor - c a = - 2 1 = - 2) vagy pluszjel (például ha a = -2és c=6, akkor - c a = - 6 - 2 = 3); nem egyenlő a nullával, mert c ≠ 0. Lazítsunk részletesebben azokon a helyzeteken, amikor - c a< 0 и - c a > 0 .

Abban az esetben, ha - c a< 0 , уравнение x 2 = - c a не будет иметь корней. Утверждая это, мы опираемся на то, что квадратом любого числа является число неотрицательное. Из сказанного следует, что при - c a < 0 ни для какого числа p p 2 = - c a egyenlőség nem lehet igaz.

Minden más, ha - c a > 0: emlékezzen a négyzetgyökre, és nyilvánvalóvá válik, hogy az x 2 \u003d - c a egyenlet gyöke a - c a szám lesz, mivel - c a 2 \u003d - c a. Könnyen megérthető, hogy a - - c a - szám az x 2 = - c a egyenlet gyöke is: valóban, - - c a 2 = - c a .

Az egyenletnek nem lesz más gyökere. Ezt az ellenkező módszerrel demonstrálhatjuk. Először állítsuk be a fent talált gyökök jelölését mint x 1és − x 1. Tegyük fel, hogy az x 2 = - c a egyenletnek is van gyöke x2, ami eltér a gyökerektől x 1és − x 1. Ezt úgy tudjuk, hogy behelyettesítjük az egyenletbe ahelyett x gyökereiből az egyenletet tisztességes numerikus egyenlőséggé alakítjuk.

Mert x 1és − x 1írd: x 1 2 = - c a , és for x2- x 2 2 \u003d - c a. A numerikus egyenlőségek tulajdonságai alapján tagonként kivonunk egy valódi egyenlőséget a másikból, ami a következőt kapja: x 1 2 − x 2 2 = 0. Használja a számműveletek tulajdonságait az utolsó egyenlőség átírásához (x 1 - x 2) (x 1 + x 2) = 0. Ismeretes, hogy két szám szorzata akkor és csak akkor nulla, ha legalább az egyik szám nulla. Az elmondottakból az következik x1 − x2 = 0és/vagy x1 + x2 = 0, ami ugyanaz x2 = x1és/vagy x 2 = − x 1. Nyilvánvaló ellentmondás merült fel, mert eleinte abban állapodtak meg, hogy az egyenlet gyökere x2 különbözik x 1és − x 1. Tehát bebizonyítottuk, hogy az egyenletnek nincs más gyökere, mint x = - c a és x = - - c a .

Összefoglaljuk az összes fenti érvet.

6. definíció

Hiányos másodfokú egyenlet a x 2 + c = 0 ekvivalens az x 2 = - c a egyenlettel, amely:

  • nem lesz gyökere a - c a< 0 ;
  • két gyöke lesz x = - c a és x = - - c a , ha - c a > 0 .

Mondjunk példákat az egyenletek megoldására a x 2 + c = 0.

3. példa

Adott egy másodfokú egyenlet 9 x 2 + 7 = 0 . Meg kell találni a megoldását.

Döntés

A szabad tagot átvisszük az egyenlet jobb oldalára, ekkor az egyenlet alakot ölt 9 x 2 \u003d - 7.
A kapott egyenlet mindkét oldalát elosztjuk 9 , akkor x 2 = - 7 9 . A jobb oldalon egy mínuszjelű számot látunk, ami azt jelenti: az adott egyenletnek nincs gyöke. Ezután az eredeti hiányos másodfokú egyenlet 9 x 2 + 7 = 0 nem lesznek gyökerei.

Válasz: az egyenlet 9 x 2 + 7 = 0 nincsenek gyökerei.

4. példa

Meg kell oldani az egyenletet − x2 + 36 = 0.

Döntés

Tegyük át a 36-ot a jobb oldalra: − x 2 = − 36.
Osszuk fel mindkét részt − 1 , kapunk x2 = 36. A jobb oldalon van egy pozitív szám, amiből arra következtethetünk x = 36 vagy x = - 36 .
Kivonjuk a gyökeret, és felírjuk a végeredményt: egy hiányos másodfokú egyenlet − x2 + 36 = 0 két gyökere van x=6 vagy x = -6.

Válasz: x=6 vagy x = -6.

Az a x 2 +b x=0 egyenlet megoldása

Elemezzük a harmadik típusú nem teljes másodfokú egyenleteket, amikor c = 0. Megoldást találni egy nem teljes másodfokú egyenletre a x 2 + b x = 0, a faktorizációs módszert használjuk. Tényezőzzük az egyenlet bal oldalán lévő polinomot, a közös tényezőt a zárójelekből kivéve x. Ez a lépés lehetővé teszi az eredeti hiányos másodfokú egyenlet megfelelőjére történő átalakítását x (a x + b) = 0. Ez az egyenlet pedig ekvivalens az egyenletkészlettel x=0és a x + b = 0. Az egyenlet a x + b = 0 lineáris, és annak gyökere: x = − b a.

7. definíció

Így a nem teljes másodfokú egyenlet a x 2 + b x = 0 két gyökere lesz x=0és x = − b a.

Rögzítsük az anyagot egy példával.

5. példa

Meg kell találni a 2 3 · x 2 - 2 2 7 · x = 0 egyenlet megoldását.

Döntés

Vegyük ki x a zárójelen kívül, és kapjuk meg az x · 2 3 · x - 2 2 7 = 0 egyenletet. Ez az egyenlet ekvivalens az egyenletekkel x=0és 2 3 x - 2 2 7 = 0 . Most meg kell oldania a kapott lineáris egyenletet: 2 3 · x = 2 2 7 , x = 2 2 7 2 3 .

Az egyenlet megoldását röviden a következőképpen írjuk fel:

2 3 x 2 - 2 2 7 x = 0 x 2 3 x - 2 2 7 = 0

x = 0 vagy 2 3 x - 2 2 7 = 0

x = 0 vagy x = 3 3 7

Válasz: x = 0, x = 3 3 7.

Diszkrimináns, másodfokú egyenlet gyökeinek képlete

A másodfokú egyenletek megoldásához van egy gyökképlet:

8. definíció

x = - b ± D 2 a, ahol D = b 2 − 4 a c a másodfokú egyenlet úgynevezett diszkriminánsa.

Az x \u003d - b ± D 2 a beírása lényegében azt jelenti, hogy x 1 \u003d - b + D 2 a, x 2 \u003d - b - D 2 a.

Hasznos lesz megérteni, hogyan származtatták a jelzett képletet és hogyan kell alkalmazni.

Másodfokú egyenlet gyökeinek képletének levezetése

Tegyük fel, hogy egy másodfokú egyenlet megoldásával állunk szemben a x 2 + b x + c = 0. Végezzünk el számos ekvivalens transzformációt:

  • ossza el az egyenlet mindkét oldalát a számmal a, nullától eltérően megkapjuk a redukált másodfokú egyenletet: x 2 + b a x + c a \u003d 0;
  • válassza ki a teljes négyzetet a kapott egyenlet bal oldalán:
    x 2 + b a x + c a = x 2 + 2 b 2 a x + b 2 a 2 - b 2 a 2 + c a = = x + b 2 a 2 - b 2 a 2 + c a
    Ezt követően az egyenlet a következőképpen alakul: x + b 2 a 2 - b 2 a 2 + c a \u003d 0;
  • most az utolsó két tagot át lehet vinni a jobb oldalra, az előjelet az ellenkezőjére változtatva, ami után kapjuk: x + b 2 · a 2 = b 2 · a 2 - c a ;
  • végül átalakítjuk az utolsó egyenlőség jobb oldalára írt kifejezést:
    b 2 a 2 - c a \u003d b 2 4 a 2 - c a \u003d b 2 4 a 2 - 4 a c 4 a 2 \u003d b 2 - 4 a c 4 a 2.

Így elérkeztünk az x + b 2 a 2 = b 2 - 4 a c 4 a 2 egyenlethez, amely ekvivalens az eredeti egyenlettel a x 2 + b x + c = 0.

Az előző bekezdésekben az ilyen egyenletek megoldását tárgyaltuk (a nem teljes másodfokú egyenletek megoldása). A már megszerzett tapasztalatok lehetővé teszik az x + b 2 a 2 = b 2 - 4 a c 4 a 2 egyenlet gyökereire vonatkozó következtetés levonását:

  • b 2 - 4 a c 4 a 2 esetén< 0 уравнение не имеет действительных решений;
  • b 2 - 4 · a · c 4 · a 2 = 0 esetén az egyenlet alakja x + b 2 · a 2 = 0, akkor x + b 2 · a = 0.

Innen az egyetlen gyök x = - b 2 · a nyilvánvaló;

  • b 2 - 4 a c 4 a 2 > 0 esetén a helyes: x + b 2 a = b 2 - 4 a c 4 a 2 vagy x = b 2 a - b 2 - 4 a c 4 a 2, ami a ugyanaz, mint az x + - b 2 a = b 2 - 4 a c 4 a 2 vagy x = - b 2 a - b 2 - 4 a c 4 a 2, azaz. az egyenletnek két gyöke van.

Arra a következtetésre juthatunk, hogy az x + b 2 a 2 = b 2 - 4 a c 4 a 2 egyenlet gyökeinek megléte vagy hiánya (és így az eredeti egyenlet) a b 2 - 4 a c kifejezés előjelétől függ. 4 · a jobb oldalra írt 2. És ennek a kifejezésnek a jelét a számláló jele adja (a nevező 4 és 2 mindig pozitív lesz), vagyis a kifejezés jele b 2 − 4 a c. Ez a kifejezés b 2 − 4 a c név van megadva - a másodfokú egyenlet diszkriminánsa és a D betű a jelölése. Itt felírhatja a diszkrimináns lényegét - értékéből és előjeléből arra következtetnek, hogy a másodfokú egyenletnek lesz-e valódi gyöke, és ha igen, hány gyöke - egy vagy kettő.

Térjünk vissza az x + b 2 a 2 = b 2 - 4 a c 4 a 2 egyenlethez. Írjuk át a diszkriminancia jelöléssel: x + b 2 · a 2 = D 4 · a 2 .

Foglaljuk össze a következtetéseket:

9. definíció

  • nál nél D< 0 az egyenletnek nincs valódi gyökere;
  • nál nél D=0 az egyenletnek egyetlen gyöke van x = - b 2 · a ;
  • nál nél D > 0 az egyenletnek két gyöke van: x \u003d - b 2 a + D 4 a 2 vagy x \u003d - b 2 a - D 4 a 2. A gyökök tulajdonságai alapján ezek a gyökök a következőképpen írhatók fel: x \u003d - b 2 a + D 2 a vagy - b 2 a - D 2 a. És amikor megnyitjuk a modulokat, és a törteket közös nevezőre csökkentjük, a következőket kapjuk: x \u003d - b + D 2 a, x \u003d - b - D 2 a.

Tehát okoskodásunk eredménye a másodfokú egyenlet gyökeinek képletének levezetése volt:

x = - b + D 2 a, x = - b - D 2 a, diszkrimináns D képlettel számítjuk ki D = b 2 − 4 a c.

Ezek a formulák lehetővé teszik mindkét valós gyök meghatározását, ha a diszkrimináns nagyobb, mint nulla. Ha a diszkrimináns nulla, mindkét képlet alkalmazása ugyanazt a gyökét adja a másodfokú egyenlet egyetlen megoldásaként. Abban az esetben, ha a diszkrimináns negatív, és a másodfokú gyökképletet próbáljuk használni, akkor azzal kell szembesülnünk, hogy egy negatív szám négyzetgyökét ki kell húzni, ami túlmutat a valós számokon. Negatív diszkrimináns esetén a másodfokú egyenletnek nem lesz valós gyöke, de lehetséges egy összetett konjugált gyökpár, amelyet az általunk kapott gyökképletek határoznak meg.

Másodfokú egyenletek megoldásának algoritmusa gyökképletekkel

A másodfokú egyenletet a gyökképlet azonnali felhasználásával is meg lehet oldani, de ez alapvetően akkor történik meg, ha összetett gyököket kell találni.

Az esetek nagy részében a keresés általában nem összetett, hanem másodfokú egyenlet valós gyökereire vonatkozik. Ekkor optimális, mielőtt a másodfokú egyenlet gyökére vonatkozó képleteket használnánk, először meghatározzuk a diszkriminánst, és megbizonyosodunk arról, hogy nem negatív (ellenkező esetben azt a következtetést vonjuk le, hogy az egyenletnek nincs valódi gyöke), majd folytatjuk a a gyökerek értéke.

A fenti érvelés lehetővé teszi egy másodfokú egyenlet megoldására szolgáló algoritmus megfogalmazását.

10. definíció

Másodfokú egyenlet megoldására a x 2 + b x + c = 0, szükséges:

  • képlet szerint D = b 2 − 4 a c találja meg a diszkrimináns értékét;
  • D-nél< 0 сделать вывод об отсутствии у квадратного уравнения действительных корней;
  • ha D = 0, keressük meg az egyenlet egyetlen gyökét az x = - b 2 · a képlettel;
  • ha D > 0, határozzuk meg a másodfokú egyenlet két valós gyökét az x = - b ± D 2 · a képlettel.

Vegye figyelembe, hogy ha a diszkrimináns nulla, használhatja az x = - b ± D 2 · a képletet, amely ugyanazt az eredményt adja, mint az x = - b 2 · a képlet.

Vegye figyelembe a példákat.

Példák másodfokú egyenletek megoldására

Példák megoldását mutatjuk be a diszkrimináns különböző értékeire.

6. példa

Meg kell találni az egyenlet gyökereit x 2 + 2 x - 6 = 0.

Döntés

Felírjuk a másodfokú egyenlet numerikus együtthatóit: a \u003d 1, b \u003d 2 és c = – 6. Ezután az algoritmus szerint járunk el, azaz. Kezdjük el kiszámolni a diszkriminánst, amelyre behelyettesítjük az a , b együtthatókat és c a diszkrimináns képletbe: D = b 2 − 4 a c = 2 2 − 4 1 (− 6) = 4 + 24 = 28 .

Így azt kaptuk, hogy D > 0, ami azt jelenti, hogy az eredeti egyenletnek két valós gyöke lesz.
Megtalálásukhoz az x \u003d - b ± D 2 · a gyökképletet használjuk, és a megfelelő értékeket helyettesítve a következőt kapjuk: x \u003d - 2 ± 28 2 · 1. A kapott kifejezést egyszerűsítjük úgy, hogy a faktort kivesszük a gyök előjeléből, majd a tört redukálásával:

x = - 2 ± 2 7 2

x = - 2 + 2 7 2 vagy x = - 2 - 2 7 2

x = - 1 + 7 vagy x = - 1 - 7

Válasz: x = - 1 + 7 , x = - 1 - 7 .

7. példa

Másodfokú egyenletet kell megoldani − 4 x 2 + 28 x − 49 = 0.

Döntés

Határozzuk meg a diszkriminánst: D = 28 2 - 4 (- 4) (- 49) = 784 - 784 = 0. Ezzel a diszkrimináns értékkel az eredeti egyenletnek csak egy gyöke lesz, amelyet az x = - b 2 · a képlet határoz meg.

x = - 28 2 (- 4) x = 3, 5

Válasz: x = 3, 5.

8. példa

Meg kell oldani az egyenletet 5 év 2 + 6 év + 2 = 0

Döntés

Ennek az egyenletnek a numerikus együtthatói a következők: a = 5 , b = 6 és c = 2 . A diszkrimináns meghatározásához ezeket az értékeket használjuk: D = b 2 − 4 · a · c = 6 2 − 4 · 5 · 2 = 36 − 40 = − 4 . A kiszámított diszkrimináns negatív, így az eredeti másodfokú egyenletnek nincs valódi gyökere.

Abban az esetben, ha a feladat összetett gyökök megjelölése, akkor a gyökképletet alkalmazzuk komplex számokkal végzett műveletek végrehajtásával:

x \u003d - 6 ± - 4 2 5,

x \u003d - 6 + 2 i 10 vagy x \u003d - 6 - 2 i 10,

x = - 3 5 + 1 5 i vagy x = - 3 5 - 1 5 i .

Válasz: nincsenek igazi gyökerek; az összetett gyökök: - 3 5 + 1 5 i , - 3 5 - 1 5 i .

Az iskolai tantervben szabványként nincs előírás az összetett gyökerek keresésére, ezért ha a megoldás során a diszkriminánst negatívnak definiálják, azonnal rögzítésre kerül a válasz, hogy nincsenek valódi gyökerek.

Gyökérképlet akár második együtthatóhoz

Az x = - b ± D 2 a (D = b 2 − 4 a c) gyökképlet lehetővé teszi egy másik, kompaktabb képlet előállítását, amely lehetővé teszi másodfokú egyenletek megoldását az x-ben páros együtthatóval (vagy együtthatóval). 2 a n formájú, például 2 3 vagy 14 ln 5 = 2 7 ln 5). Mutassuk meg, hogyan keletkezik ez a képlet.

Tegyük fel, hogy azzal a feladattal állunk szemben, hogy megoldást találjunk az a · x 2 + 2 · n · x + c = 0 másodfokú egyenletre. Az algoritmus szerint járunk el: meghatározzuk a D = (2 n) 2 − 4 a c = 4 n 2 − 4 a c = 4 (n 2 − a c) diszkriminánst, majd a gyökképletet használjuk:

x \u003d - 2 n ± D 2 a, x \u003d - 2 n ± 4 n 2 - a c 2 a, x \u003d - 2 n ± 2 n 2 - a c 2 a, x = - n ± n 2 - a · c a .

Jelöljük az n 2 − a c kifejezést D 1-nek (néha D "-nek jelölik). Ekkor a figyelembe vett másodfokú egyenlet gyökeinek képlete a második 2 n együtthatóval a következőképpen alakul:

x \u003d - n ± D 1 a, ahol D 1 \u003d n 2 - a c.

Könnyen belátható, hogy D = 4 · D 1 vagy D 1 = D 4 . Más szóval, D 1 a diszkrimináns negyede. Nyilvánvaló, hogy D 1 előjele megegyezik D előjelével, ami azt jelenti, hogy D 1 előjele egy másodfokú egyenlet gyökeinek meglétét vagy hiányát is jelezheti.

11. meghatározás

Tehát egy 2 n-es második együtthatójú másodfokú egyenlet megoldásához szükséges:

  • keresse meg D 1 = n 2 − a c ;
  • a D 1-ben< 0 сделать вывод, что действительных корней нет;
  • D 1 = 0 esetén határozza meg az egyenlet egyetlen gyökét az x = - n a képlettel;
  • ha D 1 > 0, határozzunk meg két valós gyöket az x = - n ± D 1 képlet segítségével.

9. példa

Meg kell oldani az 5 · x 2 − 6 · x − 32 = 0 másodfokú egyenletet.

Döntés

Az adott egyenlet második együtthatója 2 · (− 3) . Ezután átírjuk a megadott másodfokú egyenletet a következőre: 5 · x 2 + 2 · (− 3) · x − 32 = 0, ahol a = 5, n = − 3 és c = − 32.

Számítsuk ki a diszkrimináns negyedik részét: D 1 = n 2 − a c = (− 3) 2 − 5 (− 32) = 9 + 160 = 169 . A kapott érték pozitív, ami azt jelenti, hogy az egyenletnek két valós gyöke van. Meghatározzuk őket a gyökök megfelelő képletével:

x = - n ± D 1 a , x = - - 3 ± 169 5 , x = 3 ± 13 5 ,

x = 3 + 13 5 vagy x = 3 - 13 5

x = 3 1 5 vagy x = - 2

Lehetséges lenne a másodfokú egyenlet gyökeinek szokásos képletével is számításokat végezni, de ebben az esetben a megoldás körülményesebb lenne.

Válasz: x = 3 1 5 vagy x = - 2 .

Másodfokú egyenletek formájának egyszerűsítése

Néha lehetséges az eredeti egyenlet alakjának optimalizálása, ami leegyszerűsíti a gyökerek kiszámításának folyamatát.

Például a 12 x 2 - 4 x - 7 \u003d 0 másodfokú egyenlet egyértelműen kényelmesebb megoldáshoz, mint az 1200 x 2 - 400 x - 700 \u003d 0.

Gyakrabban a másodfokú egyenlet alakjának egyszerűsítését úgy hajtják végre, hogy mindkét részét megszorozzák vagy osztják egy bizonyos számmal. Például fentebb bemutattuk az 1200 x 2 - 400 x - 700 = 0 egyenlet egyszerűsített ábrázolását, amelyet úgy kaptunk, hogy mindkét részét elosztjuk 100-zal.

Egy ilyen transzformáció akkor lehetséges, ha a másodfokú egyenlet együtthatói nem relatíve prímszámok. Ezután általában az egyenlet mindkét részét elosztjuk együtthatói abszolút értékének legnagyobb közös osztójával.

Példaként használjuk a 12 x 2 − 42 x + 48 = 0 másodfokú egyenletet. Határozzuk meg együtthatóinak abszolút értékeinek gcd-jét: gcd (12 , 42 , 48) = gcd(gcd (12 , 42) , 48) = gcd (6 , 48) = 6 . Osszuk el az eredeti másodfokú egyenlet mindkét részét 6-tal, és kapjuk a 2 · x 2 − 7 · x + 8 = 0 ekvivalens másodfokú egyenletet.

A másodfokú egyenlet mindkét oldalának szorzásával a törtegyütthatókat általában kiküszöböljük. Ebben az esetben szorozzuk meg együtthatói nevezőinek legkisebb közös többszörösével. Például, ha az 1 6 x 2 + 2 3 x - 3 \u003d 0 másodfokú egyenlet minden részét megszorozzuk LCM-mel (6, 3, 1) \u003d 6, akkor egyszerűbb formában lesz megírva x 2 + 4 x - 18 = 0 .

Végül megjegyezzük, hogy szinte mindig megszabadulni a mínusztól a másodfokú egyenlet első együtthatójánál, megváltoztatva az egyenlet minden tagjának előjelét, amit úgy érünk el, hogy mindkét részt megszorozzuk (vagy osztjuk) −1-gyel. Például a - 2 x 2 - 3 x + 7 \u003d 0 másodfokú egyenletből áttérhet az egyszerűsített változatára: 2 x 2 + 3 x - 7 \u003d 0.

A gyökök és az együtthatók kapcsolata

Az x = - b ± D 2 · a másodfokú egyenletek gyökeinek már ismert képlete az egyenlet gyökereit annak numerikus együtthatóival fejezi ki. E képlet alapján lehetőségünk van más függőségeket beállítani a gyökök és együtthatók között.

A leghíresebb és leginkább alkalmazható a Vieta-tétel képlete:

x 1 + x 2 \u003d - b a és x 2 \u003d c a.

Konkrétan, az adott másodfokú egyenletnél a gyökök összege a második ellentétes előjelű együttható, és a gyökök szorzata egyenlő a szabad taggal. Például a 3 · x 2 − 7 · x + 22 \u003d 0 másodfokú egyenlet alapján azonnal meghatározható, hogy gyökeinek összege 7 3, a gyökök szorzata pedig 22 3.

Számos más összefüggés is megtalálható a másodfokú egyenlet gyökei és együtthatói között. Például egy másodfokú egyenlet gyökeinek négyzetösszege kifejezhető együtthatókkal:

x 1 2 + x 2 2 = (x 1 + x 2) 2 - 2 x 1 x 2 = - b a 2 - 2 c a = b 2 a 2 - 2 c a = b 2 - 2 a c a 2.

Ha hibát észlel a szövegben, jelölje ki, és nyomja meg a Ctrl+Enter billentyűkombinációt

A másodfokú egyenletre vonatkozó feladatokat az iskolai tantervben és az egyetemeken is tanulmányozzák. Ezek a * x ^ 2 + b * x + c \u003d 0 alakú egyenletek értendők, ahol x- változó, a,b,c – állandók; a<>0 . A probléma az egyenlet gyökereinek megtalálása.

A másodfokú egyenlet geometriai jelentése

A másodfokú egyenlettel ábrázolt függvény grafikonja parabola. A másodfokú egyenlet megoldásai (gyökei) a parabola és az x tengellyel való metszéspontok. Ebből következik, hogy három eset lehetséges:
1) a parabolának nincs metszéspontja az x tengellyel. Ez azt jelenti, hogy a felső síkban van ágakkal felfelé, vagy az alsó síkban lefelé ágakkal. Ilyen esetekben a másodfokú egyenletnek nincs valódi gyöke (két összetett gyöke van).

2) a parabolának van egy metszéspontja az Ox tengellyel. Az ilyen pontot a parabola csúcsának nevezzük, és a benne lévő másodfokú egyenlet elnyeri minimális vagy maximális értékét. Ebben az esetben a másodfokú egyenletnek egy valós gyöke (vagy két azonos gyöke) van.

3) Az utolsó eset a gyakorlatban érdekesebb - a parabolának két metszéspontja van az abszcissza tengellyel. Ez azt jelenti, hogy az egyenletnek két valódi gyöke van.

A változók hatványaihoz tartozó együtthatók elemzése alapján érdekes következtetések vonhatók le a parabola elhelyezéséről.

1) Ha az a együttható nullánál nagyobb, akkor a parabola felfelé, ha negatív, akkor a parabola ágai lefelé irányulnak.

2) Ha a b együttható nullánál nagyobb, akkor a parabola csúcsa a bal oldali félsíkban, ha negatív értéket vesz fel, akkor a jobb oldalon.

Másodfokú egyenlet megoldási képletének levezetése

Vigyük át az állandót a másodfokú egyenletből

egyenlőségjelre a kifejezést kapjuk

Mindkét oldalt megszorozzuk 4a-val

Ha teljes négyzetet szeretne kapni a bal oldalon, adjon hozzá b ^ 2-t mindkét részhez, és hajtsa végre az átalakítást

Innen találjuk

A diszkrimináns képlete és a másodfokú egyenlet gyökei

A diszkrimináns a gyök kifejezés értéke, ha pozitív, akkor az egyenletnek két valós gyöke van, a képlettel számítva Ha a diszkrimináns nulla, akkor a másodfokú egyenletnek egy megoldása van (két egybeeső gyök), ami könnyen megkapható a fenti képletből D=0 esetén. Ha a diszkrimináns negatív, akkor nincsenek valódi gyökök. A másodfokú egyenlet komplex síkbeli megoldásainak tanulmányozásához és értékük kiszámításához a képlet

Vieta tétele

Tekintsünk egy másodfokú egyenlet két gyökét, és ezek alapján alkossunk másodfokú egyenletet Maga a Vieta-tétel könnyen következik a jelölésből: ha megvan a formának másodfokú egyenlete. akkor gyökeinek összege egyenlő az ellenkező előjellel vett p együtthatóval, és az egyenlet gyökeinek szorzata egyenlő a q szabad taggal. A fenti képlet így fog kinézni. Ha a klasszikus egyenletben az a konstans nem nulla, akkor a teljes egyenletet el kell osztani vele, majd alkalmazni kell a Vieta-tételt.

A másodfokú egyenlet ütemezése faktorokon

Legyen kitűzve a feladat: a másodfokú egyenlet faktorokra bontása. Ennek végrehajtásához először megoldjuk az egyenletet (keressük meg a gyököket). Ezután a talált gyököket behelyettesítjük a másodfokú egyenlet kibővítési képletébe, ez a probléma megoldódik.

Feladatok másodfokú egyenlethez

1. feladat. Keresse meg a másodfokú egyenlet gyökereit!

x^2-26x+120=0 .

Megoldás: Írja fel az együtthatókat és helyettesítse be a diszkrimináns képletbe

Ennek az értéknek a gyöke 14, számológéppel könnyen megtalálható, vagy gyakori használattal megjegyezhető, azonban a kényelem kedvéért a cikk végén felsorolom azokat a számnégyzeteket, amelyek gyakran előfordulhatnak. megtalálható az ilyen feladatokban.
A talált értéket a rendszer behelyettesíti a gyökképletbe

és megkapjuk

2. feladat. oldja meg az egyenletet

2x2+x-3=0.

Megoldás: Van egy teljes másodfokú egyenletünk, írjuk ki az együtthatókat és keressük meg a diszkriminánst


Ismert képletek segítségével megtaláljuk a másodfokú egyenlet gyökereit

3. feladat. oldja meg az egyenletet

9x2 -12x+4=0.

Megoldás: Van egy teljes másodfokú egyenletünk. Határozza meg a diszkriminánst

Azt az esetet kaptuk, amikor a gyökerek egybeesnek. A gyökök értékeit a képlet alapján találjuk meg

4. feladat. oldja meg az egyenletet

x^2+x-6=0 .

Megoldás: Azokban az esetekben, ahol kicsi az együttható x-hez, célszerű a Vieta-tételt alkalmazni. Feltétele alapján két egyenletet kapunk

A második feltételből azt kapjuk, hogy a szorzatnak -6-nak kell lennie. Ez azt jelenti, hogy az egyik gyökér negatív. A következő lehetséges megoldáspárunk van(-3;2), (3;-2) . Az első feltételt figyelembe véve a második megoldáspárt elutasítjuk.
Az egyenlet gyökerei a következők

5. feladat Határozza meg egy téglalap oldalainak hosszát, ha kerülete 18 cm, területe 77 cm 2!

Megoldás: Egy téglalap kerületének fele egyenlő a szomszédos oldalak összegével. Jelöljük x-et - a nagyobb oldalt, majd 18-x a kisebbik oldala. Egy téglalap területe egyenlő a következő hosszúságok szorzatával:
x(18x)=77;
vagy
x 2 -18x + 77 \u003d 0.
Keresse meg az egyenlet diszkriminánsát!

Kiszámoljuk az egyenlet gyökereit

Ha egy x=11, azután 18x=7, fordítva is igaz (ha x=7, akkor 21-x=9).

6. feladat Tényezőzzük a másodfokú 10x 2 -11x+3=0 egyenletet!

Megoldás: Számítsa ki az egyenlet gyökereit, ehhez megtaláljuk a diszkriminánst

A talált értéket behelyettesítjük a gyökképletbe, és kiszámítjuk

Alkalmazzuk a másodfokú egyenlet gyökekkel való bővítésének képletét

A zárójeleket kibontva megkapjuk az azonosságot.

Másodfokú egyenlet paraméterrel

Példa 1. A paraméter mely értékeire a , az (a-3) x 2 + (3-a) x-1 / 4 \u003d 0 egyenletnek egy gyöke van?

Megoldás: Az a=3 érték közvetlen helyettesítésével azt látjuk, hogy nincs megoldása. Továbbá azt a tényt fogjuk használni, hogy nulla diszkrimináns esetén az egyenletnek a 2 multiplicitás egyik gyöke van. Írjuk ki a diszkriminánst

leegyszerűsítjük és egyenlővé tesszük a nullával

Az a paraméterre vonatkozóan egy másodfokú egyenletet kaptunk, melynek megoldása a Vieta-tétel segítségével könnyen megkapható. A gyökök összege 7, szorzatuk 12. Egyszerű felsorolással megállapítjuk, hogy a 3.4 számok lesznek az egyenlet gyökerei. Mivel a számítások elején már elvettük az a=3 megoldást, az egyetlen helyes megoldás a következő lesz: a=4.Így a = 4 esetén az egyenletnek egy gyöke van.

Példa 2. A paraméter mely értékeire a , az egyenlet a(a+3)x^2+(2a+6)x-3a-9=0 egynél több gyökér van?

Megoldás: Tekintsük először a szinguláris pontokat, ezek az a=0 és a=-3 értékek lesznek. Ha a=0, az egyenlet 6x-9=0 alakra egyszerűsödik; x=3/2 és egy gyökér lesz. A= -3 esetén a 0=0 azonosságot kapjuk.
Számítsa ki a diszkriminánst!

és keresse meg a értékeit, amelyekre ez pozitív

Az első feltételből a>3-at kapunk. A másodikhoz megtaláljuk a diszkriminánst és az egyenlet gyökereit


Határozzuk meg azokat az intervallumokat, ahol a függvény pozitív értékeket vesz fel. Az a=0 pontot behelyettesítve azt kapjuk 3>0 . Tehát a (-3; 1/3) intervallumon kívül a függvény negatív. Ne felejtsd el a pontot a=0 amit ki kell zárni, mivel az eredeti egyenletnek egy gyöke van.
Ennek eredményeként két olyan intervallumot kapunk, amely kielégíti a probléma feltételét

A gyakorlatban sok hasonló feladat lesz, próbálja meg maga megbirkózni a feladatokkal, és ne felejtse el figyelembe venni az egymást kölcsönösen kizáró feltételeket. Tanulmányozza jól a másodfokú egyenletek megoldására szolgáló képleteket, gyakran van rájuk szükség a számításokban különféle problémákban és tudományokban.

Másodfokú egyenlet – könnyen megoldható! *Továbbá a "KU" szövegben. Barátaim, úgy tűnik, hogy a matematikában ez könnyebb lehet, mint egy ilyen egyenlet megoldása. De valami azt súgta nekem, hogy sok embernek problémája van vele. Úgy döntöttem, megnézem, hány megjelenítést ad a Yandex kérésenként havonta. Íme, mi történt, nézze meg:


Mit jelent? Ez azt jelenti, hogy havonta körülbelül 70 ezren keresik ezt az információt, és most nyár van, és mi lesz a tanév során - kétszer annyi kérés lesz. Ez nem meglepő, hiszen azok a fiúk és lányok, akik már régen végeztek a vizsgára, keresik ezeket az információkat, és az iskolások is igyekeznek felfrissíteni az emlékezetüket.

Annak ellenére, hogy sok olyan oldal van, amely megmondja, hogyan kell megoldani ezt az egyenletet, úgy döntöttem, hogy én is hozzájárulok és közzéteszem az anyagot. Először is szeretném, ha látogatók érkeznének webhelyemre erre a kérésre; másodszor, más cikkekben, amikor a „KU” beszéd megjelenik, linket adok ehhez a cikkhez; harmadszor, kicsit többet mesélek a megoldásáról, mint amennyit más oldalakon szoktak mondani. Kezdjük el! A cikk tartalma:

A másodfokú egyenlet a következő alakú egyenlet:

ahol az a együtthatók,btetszőleges számokkal pedig a≠0-val.

Az iskolai tanfolyamon az anyagot a következő formában adják meg - az egyenletek három osztályra való felosztása feltételesen történik:

1. Legyen két gyökere.

2. * Csak egy gyökere van.

3. Nincsenek gyökerei. Itt érdemes megjegyezni, hogy nincsenek valódi gyökereik

Hogyan számítják ki a gyökereket? Éppen!

Kiszámoljuk a diszkriminánst. E „szörnyű” szó alatt egy nagyon egyszerű képlet rejlik:

A gyökérképletek a következők:

* Ezeket a képleteket fejből kell tudni.

Azonnal leírhatod és eldöntheted:

Példa:


1. Ha D > 0, akkor az egyenletnek két gyöke van.

2. Ha D = 0, akkor az egyenletnek egy gyöke van.

3. Ha D< 0, то уравнение не имеет действительных корней.

Nézzük az egyenletet:


Ilyenkor, amikor a diszkrimináns nulla, az iskolai kurzus azt mondja, hogy egy gyöket kapunk, itt kilencnek felel meg. Így van, így van, de...

Ez az ábrázolás némileg téves. Valójában két gyökere van. Igen, igen, ne lepődj meg, kiderül, hogy két egyenlő gyök, és hogy matematikailag pontosak legyünk, akkor két gyöket kell írni a válaszba:

x 1 = 3 x 2 = 3

De ez így van - egy kis kitérő. Az iskolában leírhatod és elmondhatod, hogy csak egy gyökér van.

Most a következő példa:


Mint tudjuk, a negatív szám gyökét nem vonjuk ki, így ebben az esetben nincs megoldás.

Ez az egész döntési folyamat.

Másodfokú függvény.

Így néz ki a megoldás geometriailag. Ennek megértése rendkívül fontos (a jövőben az egyik cikkben részletesen elemezzük a másodfokú egyenlőtlenség megoldását).

Ez az űrlap függvénye:

ahol x és y változók

a, b, c olyan számok, ahol a ≠ 0

A grafikon egy parabola:

Vagyis kiderül, hogy egy olyan másodfokú egyenlet megoldásával, ahol "y" egyenlő nullával, megtaláljuk a parabola és az x tengellyel való metszéspontjait. Ezek közül kettő lehet (a diszkrimináns pozitív), egy (a diszkrimináns nulla) vagy egy sem (a diszkrimináns negatív). Bővebben a másodfokú függvényről Megnézheti Inna Feldman cikke.

Vegye figyelembe a példákat:

1. példa: Döntse el 2x 2 +8 x–192=0

a=2 b=8 c= -192

D = b 2 –4ac = 8 2 –4∙2∙(–192) = 64+1536 = 1600

Válasz: x 1 = 8 x 2 = -12

* Azonnal eloszthatja az egyenlet bal és jobb oldalát 2-vel, vagyis egyszerűsítheti. A számítások egyszerűbbek lesznek.

2. példa: Döntsd el x2–22 x+121 = 0

a=1 b=-22 c=121

D = b 2 –4ac =(–22) 2 –4∙1∙121 = 484–484 = 0

Azt kaptuk, hogy x 1 \u003d 11 és x 2 \u003d 11

A válaszban megengedett az x = 11 beírása.

Válasz: x = 11

3. példa: Döntsd el x 2 – 8x+72 = 0

a=1 b= -8 c=72

D = b 2 –4ac =(–8) 2 –4∙1∙72 = 64–288 = –224

A diszkrimináns negatív, valós számokban nincs megoldás.

Válasz: nincs megoldás

A diszkrimináns negatív. Van megoldás!

Itt az egyenlet megoldásáról lesz szó abban az esetben, ha negatív diszkriminánst kapunk. Tudsz valamit a komplex számokról? Nem részletezem itt, hogy miért és hol keletkeztek, és mi a konkrét szerepük és szükségességük a matematikában, ez egy nagy külön cikk témája.

A komplex szám fogalma.

Egy kis elmélet.

A z komplex szám alakja

z = a + bi

ahol a és b valós számok, ott az i az úgynevezett imaginárius egység.

a+bi EGY SZÁM, nem kiegészítés.

A képzeletbeli egység egyenlő mínusz egy gyökével:

Most nézzük meg az egyenletet:


Szerezzen két konjugált gyökeret.

Hiányos másodfokú egyenlet.

Tekintsünk speciális eseteket, amikor a "b" vagy "c" együttható nulla (vagy mindkettő nulla). Könnyen, megkülönböztetés nélkül megoldhatók.

1. eset. b = 0 együttható.

Az egyenlet a következő alakot ölti:

Alakítsuk át:

Példa:

4x 2 -16 = 0 => 4x 2 =16 => x 2 = 4 => x 1 = 2 x 2 = -2

2. eset. Együttható c = 0.

Az egyenlet a következő alakot ölti:

Átalakítás, faktorizálás:

*A szorzat akkor egyenlő nullával, ha legalább az egyik tényező nulla.

Példa:

9x2 –45x = 0 => 9x (x-5) =0 => x = 0 vagy x-5 =0

x 1 = 0 x 2 = 5

3. eset: b = 0 és c = 0 együtthatók.

Itt jól látható, hogy az egyenlet megoldása mindig x = 0 lesz.

Az együtthatók hasznos tulajdonságai és mintái.

Vannak olyan tulajdonságok, amelyek lehetővé teszik a nagy együtthatójú egyenletek megoldását.

ax 2 + bx+ c=0 egyenlőség

a + b+ c = 0, azután

— ha az egyenlet együtthatóira ax 2 + bx+ c=0 egyenlőség

a+ =-velb, azután

Ezek a tulajdonságok segítenek megoldani egy bizonyos típusú egyenletet.

1. példa: 5001 x 2 –4995 x – 6=0

Az együtthatók összege 5001+( 4995)+( 6) = 0, tehát

2. példa: 2501 x 2 +2507 x+6=0

Egyenlőség a+ =-velb, eszközök

Az együtthatók szabályszerűségei.

1. Ha az ax 2 + bx + c \u003d 0 egyenletben a "b" együttható (a 2 +1), és a "c" együttható számszerűen egyenlő az "a" együtthatóval, akkor a gyökei:

ax 2 + (a 2 +1) ∙ x + a \u003d 0 \u003d\u003e x 1 \u003d -a x 2 \u003d -1 / a.

Példa. Tekintsük a 6x 2 +37x+6 = 0 egyenletet.

x 1 \u003d -6 x 2 \u003d -1/6.

2. Ha az ax 2 - bx + c \u003d 0 egyenletben a "b" együttható (a 2 +1), és a "c" együttható számszerűen egyenlő az "a" együtthatóval, akkor a gyökei:

ax 2 - (a 2 + 1) ∙ x + a \u003d 0 \u003d\u003e x 1 \u003d a x 2 \u003d 1 / a.

Példa. Tekintsük a 15x 2 –226x +15 = 0 egyenletet.

x 1 = 15 x 2 = 1/15.

3. Ha az egyenletben ax 2 + bx - c = 0 "b" együttható egyenlő (a 2 – 1), és a „c” együttható számszerűen egyenlő az "a" együtthatóval, akkor a gyökerei egyenlők

ax 2 + (a 2 -1) ∙ x - a \u003d 0 \u003d\u003e x 1 \u003d - a x 2 \u003d 1 / a.

Példa. Tekintsük a 17x 2 + 288x - 17 = 0 egyenletet.

x 1 \u003d - 17 x 2 = 1/17.

4. Ha az ax 2 - bx - c \u003d 0 egyenletben a "b" együttható egyenlő (a 2 - 1), és a c együttható számszerűen egyenlő az "a" együtthatóval, akkor a gyökei:

ax 2 - (a 2 -1) ∙ x - a \u003d 0 \u003d\u003e x 1 \u003d a x 2 \u003d - 1 / a.

Példa. Tekintsük a 10x2 - 99x -10 = 0 egyenletet.

x 1 \u003d 10 x 2 \u003d - 1/10

Vieta tétele.

Vieta tétele a híres francia matematikusról, Francois Vietáról kapta a nevét. Vieta tételével kifejezhető egy tetszőleges KU gyökeinek összege és szorzata együtthatóival.

45 = 1∙45 45 = 3∙15 45 = 5∙9.

Összegezve, a 14-es szám csak 5-öt és 9-et ad. Ezek a gyökerek. Egy bizonyos készség birtokában a bemutatott tétel segítségével számos másodfokú egyenletet azonnal szóban megoldhat.

Vieta tétele ráadásul. kényelmes, mert a másodfokú egyenlet szokásos módon (a diszkriminánson keresztül) történő megoldása után a kapott gyökök ellenőrizhetők. Azt javaslom, hogy ezt mindig csináld.

ÁTVITELI MÓDSZER

Ezzel a módszerrel az "a" együtthatót megszorozzák a szabad taggal, mintha "átviszik" rá, ezért ún. átviteli mód. Ezt a módszert akkor alkalmazzuk, amikor könnyű megtalálni egy egyenlet gyökereit Vieta tételével, és ami a legfontosabb, ha a diszkrimináns egy pontos négyzet.

Ha egy a± b+c≠ 0, akkor az átviteli technikát használják, például:

2x 2 – 11x+ 5 = 0 (1) => x 2 – 11x+ 10 = 0 (2)

A (2) egyenletben szereplő Vieta-tétel szerint könnyű meghatározni, hogy x 1 \u003d 10 x 2 \u003d 1

Az egyenlet kapott gyökeit el kell osztani 2-vel (mivel a kettőt x 2-ből „dobták”), azt kapjuk

x 1 \u003d 5 x 2 = 0,5.

Mi az indoklás? Nézze meg, mi történik.

Az (1) és (2) egyenlet diszkriminatív elemei a következők:

Ha megnézi az egyenletek gyökereit, akkor csak különböző nevezőket kapunk, és az eredmény pontosan az x 2 együtthatótól függ:


A második (módosított) gyökerek 2-szer nagyobbak.

Ezért az eredményt elosztjuk 2-vel.

*Ha hármat dobunk, akkor az eredményt elosztjuk 3-mal, és így tovább.

Válasz: x 1 = 5 x 2 = 0,5

négyzetméter ur-ie és a vizsga.

A fontosságáról röviden elmondom - gyorsan és gondolkodás nélkül KELL DÖNTENI, fejből kell tudni a gyökerek és a megkülönböztető képleteit. A USE feladatok részét képező feladatok közül sok egy másodfokú egyenlet megoldásához vezet (beleértve a geometriaiakat is).

Mit érdemes megjegyezni!

1. Az egyenlet alakja lehet "implicit". Például a következő bejegyzés lehetséges:

15+ 9x 2 - 45x = 0 vagy 15x + 42 + 9x 2 - 45x = 0 vagy 15 -5x + 10x 2 = 0.

Normál formába kell vinnie (hogy ne keveredjen össze a megoldás során).

2. Ne feledje, hogy x egy ismeretlen érték, és bármely más betűvel jelölhető - t, q, p, h és mások.

”, azaz elsőfokú egyenletek. Ebben a leckében megvizsgáljuk mi az a másodfokú egyenletés hogyan kell megoldani.

Mi az a másodfokú egyenlet

Fontos!

Az egyenlet mértékét az ismeretlen legmagasabb foka határozza meg.

Ha az ismeretlen maximális mértéke „2”, akkor van egy másodfokú egyenlete.

Példák másodfokú egyenletekre

  • 5x2 - 14x + 17 = 0
  • −x 2 + x +
    1
    3
    = 0
  • x2 + 0,25x = 0
  • x 2 − 8 = 0

Fontos! A másodfokú egyenlet általános formája így néz ki:

A x 2 + b x + c = 0

"a", "b" és "c" - adott számok.
  • "a" - az első vagy vezető együttható;
  • "b" - a második együttható;
  • "c" egy ingyenes tag.

Az "a", "b" és "c" megtalálásához össze kell hasonlítania az egyenletet az "ax 2 + bx + c \u003d 0" másodfokú egyenlet általános formájával.

Gyakoroljuk az "a", "b" és "c" együtthatók meghatározását másodfokú egyenletekben.

5x2 - 14x + 17 = 0 −7x 2 − 13x + 8 = 0 −x 2 + x +
Az egyenlet Esély
  • a=5
  • b = −14
  • c = 17
  • a = −7
  • b = −13
  • c = 8
1
3
= 0
  • a = −1
  • b = 1
  • c =
    1
    3
x2 + 0,25x = 0
  • a = 1
  • b = 0,25
  • c = 0
x 2 − 8 = 0
  • a = 1
  • b = 0
  • c = −8

Hogyan lehet másodfokú egyenleteket megoldani

A lineáris egyenletekkel ellentétben a másodfokú egyenletek megoldására speciális egyenletet használnak. képlet a gyökerek megtalálásához.

Emlékezik!

Másodfokú egyenlet megoldásához a következőkre lesz szüksége:

  • hozza a másodfokú egyenletet az "ax 2 + bx + c \u003d 0" általános alakba. Vagyis csak a "0" maradjon a jobb oldalon;
  • használja a képletet a gyökerekhez:

Használjunk egy példát annak kiderítésére, hogyan alkalmazzuk a képletet egy másodfokú egyenlet gyökereinek megkeresésére. Oldjuk meg a másodfokú egyenletet.

X 2 - 3x - 4 = 0


Az "x 2 - 3x - 4 = 0" egyenletet már az "ax 2 + bx + c = 0" általános alakra redukáltuk, és nem igényel további egyszerűsítéseket. A megoldáshoz csak jelentkeznünk kell képlet a másodfokú egyenlet gyökereinek megtalálásához.

Határozzuk meg ennek az egyenletnek az "a", "b" és "c" együtthatóit.


x 1;2 =
x 1;2 =
x 1;2 =
x 1;2 =

Segítségével bármilyen másodfokú egyenlet megoldható.

Az "x 1; 2 \u003d" képletben a gyökérkifejezés gyakran lecserélődik
"b 2 − 4ac" a "D" betűre, és megkülönböztetőnek nevezik. A diszkrimináns fogalmát részletesebben a „Mi a diszkrimináns” című leckében tárgyaljuk.

Vegyünk egy másik példát a másodfokú egyenletre.

x 2 + 9 + x = 7x

Ebben a formában meglehetősen nehéz meghatározni az "a", "b" és "c" együtthatókat. Először hozzuk az egyenletet az "ax 2 + bx + c \u003d 0" általános alakba.

X 2 + 9 + x = 7x
x 2 + 9 + x − 7x = 0
x2 + 9 - 6x = 0
x 2 − 6x + 9 = 0

Most már használhatja a képletet a gyökerekhez.

X 1; 2 =
x 1;2 =
x 1;2 =
x 1;2 =
x=

6
2

x=3
Válasz: x = 3

Vannak esetek, amikor a másodfokú egyenletekben nincs gyök. Ez a helyzet akkor fordul elő, ha a gyökér alatti képletben negatív szám jelenik meg.

Kopjevszkaja vidéki középiskola

10 módszer a másodfokú egyenletek megoldására

Vezető: Patrikeeva Galina Anatoljevna,

matematika tanár

s.Kopyevo, 2007

1. A másodfokú egyenletek kialakulásának története

1.1 Másodfokú egyenletek az ókori Babilonban

1.2 Hogyan állította össze és oldotta meg Diophantus a másodfokú egyenleteket

1.3 Másodfokú egyenletek Indiában

1.4 Másodfokú egyenletek al-Khwarizmiban

1.5 Másodfokú egyenletek Európában XIII - XVII. század

1.6 Vieta tételéről

2. Másodfokú egyenletek megoldási módszerei

Következtetés

Irodalom

1. A másodfokú egyenletek kialakulásának története

1.1 Másodfokú egyenletek az ókori Babilonban

Az ókorban nemcsak az első, hanem a másodfokú egyenletek megoldásának igényét a katonai jellegű földterületek és földművek felkutatásával, valamint a csillagászat fejlődésével kapcsolatos problémák megoldásának igénye okozta. maga a matematika. A másodfokú egyenleteket Kr.e. 2000 körül tudták megoldani. e. babilóniaiak.

A modern algebrai jelöléssel azt mondhatjuk, hogy ékírásos szövegeikben a hiányos szövegeken kívül vannak például teljes másodfokú egyenletek:

x 2 + x = ¾; x 2 - x = 14,5

Ezen egyenletek megoldásának a babiloni szövegekben megfogalmazott szabálya lényegében egybeesik a modernnel, de nem ismert, hogy a babilóniaiak hogyan jutottak el ehhez a szabályhoz. Az eddig talált ékírásos szövegek szinte mindegyike csak recept formájában megfogalmazott megoldási problémákat ad, a megtalálás módját nem jelzik.

Annak ellenére, hogy Babilonban magas az algebra fejlettsége, az ékírásos szövegekből hiányzik a negatív szám fogalma és a másodfokú egyenletek megoldásának általános módszerei.

1.2 Hogyan állította össze és oldotta meg Diophantus a másodfokú egyenleteket.

Diophantus aritmetikája nem tartalmazza az algebra szisztematikus kifejtését, hanem egy szisztematikus feladatsort tartalmaz magyarázatokkal kísérve, amelyeket különböző fokú egyenletek megfogalmazásával oldanak meg.

Az egyenletek összeállításakor Diophantus ügyesen választ ismeretleneket, hogy leegyszerűsítse a megoldást.

Itt van például az egyik feladata.

11. feladat."Keress két számot, ha tudod, hogy összegük 20, szorzatuk pedig 96"

Diophantus a következőképpen érvel: a feladat feltételéből az következik, hogy a kívánt számok nem egyenlőek, hiszen ha egyenlőek lennének, akkor a szorzatuk nem 96, hanem 100 lenne. Így az egyik több lesz, mint összegük fele, azaz . 10+x, a másik kisebb, i.e. 10-es. A különbség köztük 2x .

Ezért az egyenlet:

(10 + x) (10 - x) = 96

100 - x 2 = 96

x 2-4 = 0 (1)

Innen x = 2. A kívánt számok egyike 12 , Egyéb 8 . Döntés x = -2 mert Diophantus nem létezik, mivel a görög matematika csak pozitív számokat ismert.

Ha ezt a feladatot úgy oldjuk meg, hogy a kívánt számok egyikét ismeretlennek választjuk, akkor eljutunk az egyenlet megoldásához

y(20 - y) = 96,

y 2 - 20y + 96 = 0. (2)


Nyilvánvaló, hogy Diophantus leegyszerűsíti a megoldást azzal, hogy a kívánt számok félkülönbségét választja ismeretlennek; sikerül a problémát egy hiányos másodfokú egyenlet (1) megoldására redukálnia.

1.3 Másodfokú egyenletek Indiában

A másodfokú egyenletekkel kapcsolatos problémák már megtalálhatók az "Aryabhattam" csillagászati ​​traktátusban, amelyet Aryabhatta indiai matematikus és csillagász állított össze 499-ben. Egy másik indiai tudós, Brahmagupta (7. század) felvázolta a másodfokú egyenletek megoldásának általános szabályát egyetlen kanonikus formára redukálva:

ah 2+ b x = c, a > 0. (1)

Az (1) egyenletben az együtthatók, kivéve a a, negatív is lehet. Brahmagupta uralma lényegében egybeesik a miénkkel.

Az ókori Indiában gyakoriak voltak a nyilvános versenyek a nehéz problémák megoldásában. Az egyik régi indiai könyvben a következőt mondják az ilyen versenyekről: „Ahogyan a nap felülmúlja a csillagokat ragyogásával, úgy a tanult ember is felülmúlja a másik dicsőségét a nyilvános üléseken, algebrai feladatokat javasolva és megoldva.” A feladatokat gyakran költői formába öltöztették.

Itt van a XII. század híres indiai matematikusának egyik problémája. Bhaskara.

13. feladat.

„Egy nyüzsgő majomcsapat és tizenkettő a szőlőben…

Miután evett erőt, jól érezte magát. Ugrálni kezdtek, lógva...

Nyolcadik részük egy négyzetben Hány majom volt ott,

Szórakozás a réten. Mondja, ebben a nyájban?

Bhaskara megoldása azt jelzi, hogy tudott a másodfokú egyenletek gyökeinek kétértékűségéről (3. ábra).

A 13. feladatnak megfelelő egyenlet:

( x /8) 2 + 12 = x

Bhaskara ezt írja leple alatt:

x 2 - 64x = -768

és hogy ennek az egyenletnek a bal oldalát négyzetté egészítse ki, mindkét oldalt hozzáadja 32 2 , akkor kapok:

x 2 - 64x + 32 2 = -768 + 1024,

(x - 32) 2 = 256,

x - 32 = ± 16,

x 1 = 16, x 2 = 48.

1.4 Másodfokú egyenletek al-Khorezmiben

Al-Khorezmi algebrai értekezése a lineáris és másodfokú egyenletek osztályozását adja meg. A szerző 6 típusú egyenletet sorol fel, ezeket a következőképpen fejezi ki:

1) "A négyzetek egyenlőek a gyökökkel", azaz. ax 2 + c = b X.

2) "A négyzetek egyenlőek a számmal", azaz. ax 2 = s.

3) "A gyökök egyenlőek a számmal", azaz. ah = s.

4) "A négyzetek és a számok egyenlőek a gyökkel", azaz. ax 2 + c = b X.

5) "A négyzetek és a gyökök egyenlőek a számmal", azaz. ah 2+ bx = s.

6) "A gyökök és a számok egyenlőek a négyzetekkel", azaz. bx + c \u003d ax 2.

Al-Khwarizmi számára, aki kerülte a negatív számok használatát, ezen egyenletek mindegyike összeadás, nem kivonás. Ebben az esetben nyilvánvalóan nem veszik figyelembe azokat az egyenleteket, amelyeknek nincs pozitív megoldása. A szerző felvázolja ezen egyenletek megoldásának módszereit al-jabr és al-muqabala módszereivel. Döntései természetesen nem teljesen esnek egybe a miénkkel. Arról nem is beszélve, hogy pusztán retorikai, meg kell jegyezni például, hogy az első típusú hiányos másodfokú egyenlet megoldásakor

al-Khorezmi, mint minden matematikus a 17. század előtt, nem veszi figyelembe a nulla megoldást, valószínűleg azért, mert az konkrét gyakorlati feladatokban nem számít. A teljes másodfokú egyenletek megoldása során al-Khorezmi meghatározott numerikus példák segítségével meghatározza a megoldási szabályokat, majd a geometriai bizonyításokat.

14. feladat.„A négyzet és a 21-es szám egyenlő 10 gyökkel. Találd meg a gyökeret" (az x 2 + 21 = 10x egyenlet gyökerét feltételezve).

A szerző megoldása valahogy így hangzik: oszd el a gyökök számát felére, kapsz 5-öt, 5-öt megszorozod önmagával, a szorzatból kivonod a 21-et, marad 4. Vedd a 4 gyökét, kapsz 2-t. Vonsz ki 2-t 5-ből, kap 3-at, ez lesz a kívánt gyökér. Vagy adj hozzá 2-t az 5-höz, ami 7-et ad, ez is egy gyökér.

A Treatise al - Khorezmi az első olyan könyv, amely eljutott hozzánk, amelyben szisztematikusan leírják a másodfokú egyenletek osztályozását, és megadják a megoldásukra vonatkozó képleteket.

1.5 Másodfokú egyenletek Európában XIII - A XVII századokban

A másodfokú egyenletek megoldásának képleteit al-Khorezmi mintájára Európában először az "Abakusz könyve" írta le, amelyet Leonardo Fibonacci olasz matematikus írt 1202-ben. Ez a terjedelmes munka, amely tükrözi a matematika hatását, mind az iszlám országaiban, mind az ókori Görögországban, mind a teljességükben, mind az áttekinthetőségében különbözik. A szerző önállóan dolgozott ki néhány új algebrai problémamegoldási példát, és Európában elsőként közelítette meg a negatív számok bevezetését. Könyve nemcsak Olaszországban, hanem Németországban, Franciaországban és más európai országokban is hozzájárult az algebrai ismeretek elterjedéséhez. Az „Abakusz könyvéből” sok feladat bekerült szinte az összes 16-17. századi európai tankönyvbe. részben pedig XVIII.

A másodfokú egyenletek megoldásának általános szabálya egyetlen kanonikus formára redukálva:

x 2+ bx = vele,

az együtthatók minden lehetséges előjel-kombinációjára b , val vel Európában csak 1544-ben fogalmazta meg M. Stiefel.

Vietának van egy általános levezetése a másodfokú egyenlet megoldására, de Vieta csak pozitív gyököket ismert fel. Tartaglia, Cardano, Bombelli olasz matematikusok az elsők között voltak a 16. században. A pozitív és negatív gyökerek mellett vegye figyelembe. Csak a XVII. Girard, Descartes, Newton és más tudósok munkájának köszönhetően a másodfokú egyenletek megoldásának módja modern megjelenést kap.

1.6 Vieta tételéről

A Vieta nevet viselő másodfokú egyenlet együtthatói és gyökei közötti összefüggést kifejező tételt először 1591-ben fogalmazta meg így: „Ha B + D szorozva A - A 2 , egyenlő BD, azután A egyenlő NÁL NÉLés egyenlő D ».

Ahhoz, hogy megértsük Vietát, emlékeznünk kell erre DE, mint minden magánhangzó, számára az ismeretlent jelentette (a mi x), a magánhangzók NÁL NÉL, D- együtthatók az ismeretlenre. A modern algebra nyelvén Vieta fenti megfogalmazása azt jelenti: ha

(egy + b )x - x 2 = ab ,

x 2 - (a + b )x + a b = 0,

x 1 = a, x 2 = b .

Az egyenletek gyökei és együtthatói közötti kapcsolatot szimbólumokkal írt általános képletekkel kifejezve, Viet egységességet állapított meg az egyenletek megoldási módszereiben. A Vieta szimbolikája azonban még mindig messze van modern formájától. Nem ismerte fel a negatív számokat, ezért az egyenletek megoldásánál csak azokat az eseteket vette figyelembe, ahol minden gyök pozitív.

2. Másodfokú egyenletek megoldási módszerei

A másodfokú egyenletek jelentik az alapot, amelyen az algebra fenséges építménye nyugszik. A másodfokú egyenleteket széles körben használják trigonometrikus, exponenciális, logaritmikus, irracionális és transzcendentális egyenletek és egyenlőtlenségek megoldására. Mindannyian tudjuk, hogyan kell másodfokú egyenleteket megoldani az iskolától (8. osztály) az érettségiig.

Hasonló cikkek

2022 rsrub.ru. A modern tetőfedési technológiákról. Építőipari portál.