Пример акустического расчета системы вентиляции салона красоты. Акустические расчеты

Источниками шума в вентиляционных системах являются работающий вентилятор, электродвигатель, воздухораспределители, воздухозаборные устройства.

По природе возникновения различают аэродинамический и механиче­ский шум. Аэродинамический шум вызывается пульсациями давления при вращении колеса вентилятора с лопатками, а также за счет интенсивной турбулизации потока. Механический шум возникает в результате вибрации стенок кожуха вентилятора, в подшипниках, в передаче.

Для вентилятора характерно существование трех независимых путей распространения шума: по воздуховодам на всасывании, по воздуховодам на нагнетании, через стенки кожуха в окружающее пространство. В при­точных системах наиболее опасным является распространение шума в сторону нагнетания, в вытяжных - в сторону всасывания. Уровни звуко­вого давления по этим направлениям, измеренные в соответствии со стандартами, указываются в паспортных данных и каталогах вентиляци­онного оборудования.

Для уменьшения шума и вибрации проводится ряд предупредительных мер: тщательная балансировка рабочего колеса вентилятора; применение вентиляторов с меньшим числом оборотов (с лопатками, загнутыми назад и максимальным КПД); крепление вентиляторных агрегатов на виброоснова­ниях; присоединение вентиляторов к воздуховодам с помощью гибких вставок; обеспечение допустимых скоростей движения воздуха в воздухо­водах, воздухораспределительных и воздухоприемных устройствах.

Если перечисленных мероприятий недостаточно, для снижения шума в вентилируемых помещениях применяют специальные шумоглушители.

Шумоглушители бывают трубчатые, пластинчатые и камерного типа.

Трубчатые глушители выполняются в виде прямого участка металли­ческого воздуховода круглого или прямоугольного сечения, облицованного изнутри звукопоглощающим материалом, применяются при площади сече­ния воздуховодов до 0,25 м 2 .

При больших сечениях применяются пластинчатые глушители, основ­ным элементом которых является звукопоглощающая пластина - металли­ческая перфорированная по бокам коробка, заполненная звукопоглощаю­щим материалом. Пластины устанавливаются в прямоугольном кожухе.

Шумоглушители обычно устанавливаются в приточных механических системах вентиляции общественных зданий со стороны нагнетания, в вы­тяжных системах - со стороны всасывания. Необходимость установки шу­моглушителей определяется на основании акустического расчета вентиля­ционной системы. Смысл акустического расчета:

1) устанавливается допустимый уровень звукового давления для дан­ного помещения;

2) определяется уровень звуковой мощности вентилятора;

3) определяется снижение уровня звукового давления в вентиляцион­ной сети (на прямых участках воздуховодов, в тройниках и т.п.);



4) определяется уровень звукового давления в расчетной точке поме­щения, ближе всего расположенного к вентилятору со стороны нагнетания для приточной системы и со стороны всасывания - для вытяжной системы;

5) сравнивается уровень звукового давления в расчетной точке поме­щения с допустимым уровнем;

6) в случае превышения подбирается шумоглушитель необходимой конструкции и длины, определяется аэродинамическое сопротивление глу­шителя.

СНиП устанавливает допустимые уровни звукового давления, дБ, для различных помещений по среднегеометрическим частотам: 63, 125, 250, 500, 1000, 2000, 4000, 8000 Гц. Наиболее интенсивно шум вентилятора про­является в низких октавных полосах (до 300 Гц), поэтому в курсовом про­екте акустический расчет производится в октавных полосах 125, 250 Гц.

В курсовом проекте необходимо произвести акустический расчет приточной системы вентиляции центра долголетия и подобрать шумоглушитель. Ближайшее помещение со стороны нагнетания вентилятора – комната наблюдения(дежурный) размером 3,7x4,1x3 (h) м, объемом 45,5 м 3 , воздух поступает через жалюзийную решетку типа Р150 размером 150x150 мм. Скорость выхода воздуха не превышает 3 м/с. Воздух из решетки выходит параллельно потолку (угол Θ = 0°). В приточной камере установлен радиальный вентилятор ВЦ4 75-4 с параметрами: производи­тельность L = 2170 м 3 /ч, развиваемое давление Р = 315,1 Па, частота вращения n= =1390 об/мин. Диаметр колеса вентилятора D=0,9 ·D ном.

Схема расчетной ветви воздуховодов представлена на рис. 13.1а



1) Устанавливаем допустимый уровень звукового давления для данного помещения .

2) Определяем октановый уровень звуковой мощности аэродинамического шума, излучаемого в вентиляционную сеть со стороны нагнетания, дБ, по формуле:

Так как расчет мы выполняем для двух октановых полос, то удобно пользоваться таблицей. Результаты расчета октавного уровня звуковой мощности аэродинамического шума, излучаемого в вентиляционную сеть со стороны нагнетания, заносим в табл. 13.1.

№ пп Определяемые величины Усл.обоз -начения Ед.измерения Формула (источник) Значения величин в октановых полосах, Гц
Допустимый уровень шума в помещении дБ
Октановый уровень звуковой мощности аэродинамического шума вентилятора дБ 80,4 77,4
2.1. Критерий шумности вентилятора дБ
2.2. Давление, развиваемое вентилятором Па 315,1 315,1
2.3. Секундная производительность вентилятора Q м 3 /с L/3600 0,6 0,6
2.4. Поправка на режим работы вентилятора дБ
2.5. Поправка, учитывающая распределение звуковой мощности по октановым полосам дБ
2.6. Поправка, учитывающая присоединение воздуховодов дБ

3) Определяем снижение звуковой мощности в элементах вентиляционной сети, дБ:

где - сумма снижений уровня звукового давления в различных элементах сети воздуховода до входа в расчетное помещение.

3.1. Снижение уровня звуковой мощности на участках металлического воздуховода круглого сечения:

Значение снижения уровня звуковой мощности в металлических воздуховодах круглого сечения принимаем по

3.2. Снижение уровня звуковой мощности в плавных поворотах воздуховодов, определяем по . При плавном повороте шириной 125-500 мм – 0 дБ.

3.3. Снижение октановых уровней звуковой мощности в разветвлении, дБ:

где m n – отношение площадей сечений воздуховодов ;

Площадь сечения воздуховода ответвления, м 2 ;

Площадь сечения воздуховода перед ответвлением, м 2 ;

Суммарная площадь поперечных сечений воздуховодов ответвлений, м 2 .

Узлы разветвлений для вентиляционной системы (рис. 13.1а) показаны на рисунках 13.1, 13.2,13.3,13.4

Узел 1 Рис 13.1.

Расчет для полос 125 Гц и 250 Гц.

Для тройника - поворота (узел 1):

Узел 2 Рис 13.2.

Для тройника – поворота (узел 2):

Узел 3 Рис 13.3.

Для тройника – поворота (узел 3):

Узел 4 Рис 13.4.

Для тройника – поворота (узел 4):

3.4. Потери звуковой мощности в результате отражения звука от приточной решетки Р150 для частоты 125 Гц - 15 дБ, 250 Гц – 9дБ .

Суммарное снижение уровня звуковой мощности в вентиляционной сети до расчетного помещения

В октановой полосе 125 Гц:

В октановой полосе 250 Гц:

4)Определяем октановые уровни звукового давления в расчетной точке помещения. При объеме помещения до 120 м 3 и при расположении расчетной точки не менее чем на 2м от решетки средний по помещению октановый уровень звукового давления в помещении, дБ,можно определять:

В – постоянная помещения, м 2 .

Постоянную помещения в октановых полосах частот следует определять по формуле

Так как октавный уровень звуковой мощности в расчетной точке помещения меньше допустимого(для среднегеометрической частоты 125 48,5<69; для среднегеометрической частоты 250 53,6< 63) ,то шумоглушитель устанавливать не стоит.

2008-04-14

Система вентиляции и кондиционирования воздуха (СВКВ) является одним из основных источников шума в современных жилых, общественных и промышленных зданиях, на судах, в спальных вагонах поездов, во всевозможных салонах и кабинах управления.

Шум в СВКВ идет от вентилятора (главного источника шума со своими задачами ) и других источников, распространяется по воздуховоду вместе с потоком воздуха и излучается в вентилируемое помещение. На шум и его снижение влияют: кондиционеры, отопительные агрегаты, регулирующие и воздухораспределительные устройства, конструкция, повороты и разветвление воздуховодов .

Акустический расчет СВКВ производится с целью оптимального выбора всех необходимых средств снижения шума и определения ожидаемого уровня шума в расчетных точках помещения. Традиционно главным средством снижения шума системы являются активные и реактивные глушители шума . Звукоизоляцией и звукопоглощением системы и помещения требуется обеспечить выполнение норм допустимых для человека уровней шума — важных экологических норм.

Сейчас в строительных нормах и правилах России (СНиП), обязательных при проектировании, строительстве и эксплуатации зданий с целью защиты людей от шума, сложилась чрезвычайная ситуация. В старом СНиП II-12-77 «Защита от шума» метод акустического расчета СВКВ зданий устарел и не вошел поэтому в новый СНиП 23-03-2003 «Защита от шума» (взамен СНиП II-12-77), где он пока вообще отсутствует.

Таким образом, старый метод устарел, а нового нет . Настает пора создания современного метода акустического расчета СВКВ в зданиях, как это уже имеет место быть со своей спецификой в других, ранее более продвинутых по акустике, областях техники, например, на морских судах . Рассмотрим три возможных способа акустического расчета, применительно к СВКВ.

Первый способ акустического расчета . В этом способе, устанавливаемого сугубо на аналитических зависимостях, используется теория длинных линий, известная в электротехнике и отнесенная здесь к распространению звука в газе, заполняющем узкую трубу с жесткими стенками . Расчет производится при условии, что поперечник трубы много меньше длины звуковой волны.

Для трубы прямоугольного сечения сторона должна быть меньше половины длины волны, а для круглой трубы — радиус. Именно такие трубы в акустике называются узкими. Так, для воздуха на частоте 100 Гц труба прямоугольного сечения будет считаться узкой, если сторона сечения меньше 1,65 м. В узкой изогнутой трубе распространение звука останется таким же, как и в прямой трубе.

Это известно из практики применения переговорных труб, например, давно на пароходах. Типовая схема длинной линии системы вентиляции имеет две определяющие величины: L wH — звуковая мощность, поступающая в трубопровод нагнетания от вентилятора в начале длинной линии, а L wK — звуковая мощность, исходящая из трубопровода нагнетания в конце длинной линии и поступающая в вентилируемое помещение.

Длинная линия содержит следующие характерные элементы. Перечислим их: входное отверстие со звукоизоляцией R 1 , активный глушитель шума со звукоизоляцией R 2 , тройник со звукоизоляцией R 3 , реактивный глушитель шума со звукоизоляцией R 4 , дроссельная заслонка со звукоизоляцией R 5 и выпускное отверстие со звукоизоляцией R 6 . Под звукоизоляцией здесь понимается разность в дБ между звуковой мощностью в падающих на данный элемент волнах и звуковой мощности, излучаемой этим элементом после прохождения волн через него далее .

Если звукоизоляция каждого из этих элементов не зависит от всех других, то звукоизоляция всей системы может быть оценена расчетом следующим образом. Волновое уравнение для узкой трубы имеет следующий вид уравнения для плоских звуковых волн в неограниченной среде:

где c — скорость звука в воздухе, а p — звуковое давление в трубе, связанное с колебательной скоростью в трубе по второму закону Ньютона соотношением

где ρ— плотность воздуха. Звуковая мощность для плоских гармонических волн равна интегралу по площади поперечного сечения S воздуховода за период звуковых колебаний T в Вт:

где T = 1/f — период звуковых колебаний, с; f — частота колебаний, Гц. Звуковая мощность в дБ: L w = 10lg(N/N 0), где N 0 = 10 -12 Вт. В пределах указанных допущений звукоизоляция длинной линии системы вентиляции рассчитывается по следующей формуле:

Число элементов n для конкретной СВКВ может быть, конечно, больше указанных выше n = 6. Применим для расчета величин R i теорию длинных линий к вышеуказанным характерным элементам системы вентиляции воздуха.

Входное и выходное отверстия системы вентиляции с R 1 и R 6 . Место соединения двух узких труб с разными площадями поперечных сечений S 1 и S 2 по теории длинных линий — аналог границы раздела двух сред при нормальном падении звуковых волн на границу раздела. Граничные условия в месте соединения двух труб определяются равенством звуковых давлений и колебательных скоростей по обе стороны границы соединения, умноженных на площади поперечных сечений труб.

Решая полученные таким способом уравнения, получим коэффициент прохождения по энергии и звукоизоляцию места соединения двух труб с указанными выше сечениями:

Анализ этой формулы показывает, что при S 2 >> S 1 свойства второй трубы приближаются к свойствам свободной границы. Например, узкую трубу, открытую в полубесконечное пространство, можно считать с точки зрения звукоизолирующего эффекта как граничащую с вакуумом. При S 1 << S 2 свойства второй трубы приближаются к свойствам жесткой границы. В обоих случаях звукоизоляция максимальна. При равенстве площадей сечений первой и второй трубы отражение от границы отсутствует и звукоизоляция равна нулю независимо от вида сечения границы.

Активный глушитель шума R 2 . Звукоизоляцию в этом случае приближенно и быстро можно оценить в дБ, например, по известной формуле инженера А.И. Белова:

где П — периметр проходного сечения, м; l — длина глушителя, м; S — площадь поперечного сечения канала глушителя, м 2 ; α экв — эквивалентный коэффициент звукопоглощения облицовки, зависящий от действительного коэффициента поглощения α, например, следующим образом:

α 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

α экв 0,1 0,2 0,4 0,5 0,6 0,9 1,2 1,6 2,0 4,0

Из формулы следует, что звукоизоляция канала активного глушителя R 2 тем больше, чем больше поглощающая способность стенок α экв, длина глушителя l и отношение периметра канала к площади его поперечного сечения П/S. Для лучших звукопоглощающих материалов, например, марки ППУ-ЭТ, БЗМ и АТМ-1, а также других широко используемых звукопоглотителей действительный коэффициент звукопоглощения α представлен в .

Тройник R 3 . В системах вентиляции наиболее часто первая труба с площадью сечения S 3 разветвляется затем на две трубы с площадями сечения S 3.1 и S 3.2 . Такое разветвление называется тройником: через первую ветвь звук поступает, через две другие проходит дальше. В общем случае первая и вторая труба могут состоять из совокупности труб. Тогда имеем

Звукоизоляция тройника от сечения S 3 до сечения S 3.i определяется по формуле

Заметим, что из-за аэрогидродинамических соображений в тройниках стремятся обеспечить равенство площади сечений первой трубы сумме площади сечений в разветвлениях.

Реактивный (камерный) глушитель шума R 4 . Камерный глушитель шума представляет собой акустически узкую трубу с сечением S 4 , переходящую в другую акустически узкую трубу большого сечения S 4.1 длиной l, называемой камерой, и затем вновь переходящую в акустически узкую трубу с сечением S 4 . Воспользуемся и здесь теорией длинной линии. Заменив в известной формуле звукоизоляции слоя произвольной толщины при нормальном падении звуковых волн характеристический импеданс на соответствующие обратные величины площади трубы, получим формулу звукоизоляции камерного глушителя шума

где k — волновое число. Наибольшего значения звукоизоляция камерного глушителя шума достигает при sin(kl)= 1, т.е. при

где n = 1, 2, 3, … Частота максимальной звукоизоляции

где с — скорость звука в воздухе. Если в таком глушителе используется несколько камер, то формула звукоизоляции должна применяться последовательно от камеры к камере, а суммарный эффект рассчитывается применением, например, метода граничных условий. Эффективные камерные глушители требуют иногда больших габаритных размеров. Но их преимущество состоит в том, что они могут быть эффективны на любых частотах, в том числе низких, где активные глушители практически бесполезны.

Зона большой звукоизоляции у камерных глушителей шума охватывает повторяющиеся достаточно широкие полосы частот, но они имеют также периодические зоны пропускания звука, очень узкие по частоте . Для повышения эффективности и выравнивания частотной характеристики камерный глушитель часто облицовывают изнутри звукопоглотителем .

Заслонка R 5 . Заслонка конструктивно представляет собой тонкую пластину площадью S 5 и толщиной δ 5 , зажимаемую между фланцами трубопровода, отверстие в котором площадью S 5.1 меньше внутреннего диаметра трубы (или др. характерного размера). Звукоизоляция такой дроссельной заслонки

где с — скорость звука в воздухе. В первом способе главный для нас вопрос при разработке нового метода — это оценка точности и надежности результата акустического расчета системы. Определим точность и надежность результата расчета звуковой мощности, поступающейв вентилируемое помещение — в данном случае величины

Перепишем это выражение в следующих обозначениях алгебраической суммы, а именно

Заметим, что абсолютная максимальная ошибка приближенной величины есть максимальная разность между ее точным значением y 0 и приближенным y, то есть ± ε= y 0 - y. Абсолютная максимальная ошибка алгебраической суммы нескольких приближенных величин y i равна сумме абсолютных значений абсолютных ошибок слагаемых:

Здесь принят наименее благоприятный случай, когда абсолютные ошибки всех слагаемых имеют один и тот же знак. В действительности частные ошибки могут иметь различные знаки и быть распределены по разным законам. Наиболее часто на практике погрешности алгебраической суммы распределяются по нормальному закону (распределение Гаусса). Рассмотрим эти погрешности и сопоставим их с соответствующей величиной абсолютной максимальной погрешности. Определим эту величину при предположении, что каждый алгебраический член y 0i суммы распределен по нормальному закону с центром M(y 0i) и стандартом

Тогда сумма также следует нормальному закону распределения с математическим ожиданием

Погрешность алгебраической суммы определится как:

Тогда можно утверждать, что с надежностью, равной вероятности 2Φ(t), погрешность суммы не будет превосходить величины

При 2Φ(t), = 0,9973 имеем t = 3 = α и статистическая оценка при практически максимальной надежности погрешность суммы (формула) Абсолютная максимальная погрешность в этом случае

Таким образом ε 2Φ(t) << ε. Проиллюстрируем это на примере результатов расчета по первому способу. Если для всех элементов имеем ε i = ε= ±3 дБ (удовлетворительная точность исходных данных) и n = 7, то получим ε= ε n = ±21 дБ, а (формула). Результат имеет совершенно неудовлетворительную точность, он неприемлем. Если для всех характерных элементов системы вентиляции воздуха имеем ε i = ε= ±1 дБ (очень высокая точность расчета каждого из элементов n) и тоже n = 7, то получим ε= ε n = ±7 дБ, а (формула).

Здесь результат при вероятностной оценке погрешностей в первом приближении более или менее может быть приемлем. Итак, предпочтительной является вероятностная оценка погрешностей и именно ее следует использовать для выбора «запаса на незнание», который предлагается обязательно применять в акустическом расчете СВКВ для гарантии выполнения допустимых норм шума в вентилируемом помещении (ранее этого не делалось).

Но и вероятностная оценка погрешностей результата свидетельствует в данном случае о том, что достичь высокой точности результатов расчета по первому способу затруднительно даже для очень простых схем и низкоскоростной системы вентиляции. Для простых, сложных, низко- и высокоскоростных схем СВКВ удовлетворительной точности и надежности такого расчета можно достигнуть во многих случаях лишь по второму способу.

Второй способ акустического расчета . На морских судах давно используют способ расчета, основанный частично на аналитических зависимостях, но решающим образом — на экспериментальных данных . Используем опыт таких расчетов на судах для современных зданий. Тогда в вентилируемом помещении, обслуживаемом одним j-м воздухораспределителем, уровни шума L j , дБ, в расчетной точке следует определять по следующей формуле:

где L wi — звуковая мощность, дБ, генерируемая в i-м элементе СВКВ, R i — звукоизоляция в i-м элементе СВКВ, дБ (см. первый способ),

величина, учитывающая влияние помещения на шум в нем (в строительной литературе иногда вместо Q используют B). Здесь r j — расстояние от j-го воздухораспределителя до расчетной точки помещения, Q — постоянная звукопоглощения помещения, а величины χ, Φ, Ω, κ— эмпирические коэффициенты (χ— коэффициент влияния ближнего поля, Ω— пространственный угол излучения источника, Φ— фактор направленности источника, κ— коэффициент нарушения диффузности звукового поля).

Если в помещении современного здания размещены m воздухораспределителей, уровень шума от каждого из которых в расчетной точке равен L j , то суммарный шум от всех них должен быть ниже допустимых для человека уровней шума, а именно:

где L H — санитарная норма шума . По второму способу акустического расчета звуковая мощность L wi , генерируемая во всех элементах СВКВ, и звукоизоляция R i , имеющая место быть во всех этих элементах, для каждого из них находится предварительно экспериментально. Дело в том, что за последние полтора-два десятилетия сильно прогрессировала электронная техника акустических измерений, совмещенная с компьютером .

В результате предприятия, выпускающие элементы СВКВ, должны указывать в паспортах и каталогах характеристики L wi и R i , измеренные в соответствии с национальными и международными стандартами . Таким образом, во втором способе учитывается генерация шума не только в вентиляторе (как в первом способе), но и во всех остальных элементах СВКВ, что для средне- и высокоскоростной систем может иметь существенное значение.

Кроме того, поскольку невозможно рассчитать звукоизоляцию R i таких элементов системы как кондиционеры, отопительные агрегаты, регулирующие и воздухораспределительные устройства, поэтому их в первом способе нет. Но ее можно определить с необходимой точностью путем стандартных измерений, что и делается теперь для второго способа. В итоге, второй способ, в отличие от первого, охватывает практически все схемы СВКВ.

И, наконец, второй способ учитывает влияние свойств помещения на шум в нем, а также значения допустимых для человека шума согласно в данном случае действующих строительных норм и правил . Основной недостаток второго метода состоит в том, что в нем нет учета акустического взаимодействия между элементами системы — интерференционных явлений в трубопроводах.

Суммирование по указанной формуле акустического расчета СВКВ звуковых мощностей источников шума в ваттах, а звукоизоляции элементов в децибелах справедливо лишь, по меньшей мере, когда интерференции звуковых волн в системе нет. А когда интерференция в трубопроводах есть, то она может быть источником мощного звука, на чем основано, например, звучание некоторых духовых музыкальных инструментов.

Второй метод уже вошел в учебное пособие и в методические указания по курсовым проектам строительной акустики для студентов старших курсов Санкт-Петербургского государственного политехнического университета . Неучет интерференционных явлений в трубопроводах увеличивает «запас на незнание» или требует в ответственных случаях экспериментальной доводки результата до нужной степени точности и надежности.

Для выбора «запаса на незнание» предпочтительной является, как было показано выше для первого способа, вероятностная оценка погрешностей, которую предлагается обязательно применять в акустическом расчете СВКВ зданий для гарантии выполнения допустимых норм шума в помещениях при проектировании современных зданий.

Третий способ акустического расчета . Этот метод учитывает интерференционные процессы в узком трубопроводе длинной линии. Такой учет может кардинально повысить точность и надежность результата. С указанной целью предлагается для узких труб применить «способ импедансов» академика АН СССР и РАН Бреховских Л.М., который он использовал при расчете звукоизоляции произвольного числа плоскопараллельных слоев .

Итак, определим сначала входной импеданс плоскопараллельного слоя толщиной δ 2 , постоянная распространения звука которого γ 2 = β 2 + ik 2 и акустическое сопротивление Z 2 = ρ 2 c 2 . Обозначим акустическое сопротивление в среде перед слоем, откуда падают волны, Z 1 = ρ 1 c 1 , а в среде за слоем имеем Z 3 = ρ 3 c 3 . Тогда звуковое поле в слое, при опущении фактора i ωt, будет представлять собой суперпозицию волн, бегущих в прямом и обратном направлениях, со звуковым давлением

Входной импеданс всей системы слоев (формула) может быть получен простым (n - 1)-кратным применением предыдущей формулы, тогда имеем

Применим теперь, как в первом способе, теорию длинных линий к цилиндрической трубе . И таким образом, при интерференции в узких трубах имеем формулу звукоизоляции в дБ длинной линии системы вентиляции :

Входные импедансы здесь могут быть получены как, в простых случаях, расчетом , так и, во всех случаях, измерением на специальной установке современной акустической аппаратурой . По третьему способу, аналогично первому способу, имеем звуковую мощность, исходящую из воздуховода нагнетания в конце длинной линии СВКВ и поступающую в вентилируемое помещение по схеме:

Далее идет оценка результата, как в первом способе с «запасом на незнание», и уровня звукового давления помещения L, как во втором способе. Окончательно получаем следующую основную формулу акустического расчета системы вентиляции и кондиционирования воздуха зданий:

При надежности расчета 2Φ(t)= 0,9973 (практически высшая степень надежности) имеем t = 3 и величины погрешностей равны 3σ Li и 3σ Ri . При надежности 2Φ(t)= 0,95 (высокая степень надежности) имеем t = 1,96 и величины погрешностей равны примерно 2σ Li и 2σ Ri , При надежности 2Φ(t)= 0,6827 (инженерная оценка надежности) имеем t = 1,0 и величины погрешностей равны σ Li и σ Ri Третий способ, устремленный в будущее, более точен и надежен, но и более сложен — требует высокой квалификации в областях строительной акустики, теории вероятностей и математической статистики, современной измерительной техники.

Его удобно использовать в инженерных расчетах с применением компьютерных технологий. Он, по мнению автора, может быть предложен в качестве нового метода акустического расчета системы вентиляции и кондиционирования воздуха зданий.

Подводя итоги

Решение назревших вопросов разработки нового метода акустического расчета должно учитывать лучшее из уже имеющихся способов. Предлагается такой новый метод акустического расчета СВКВ зданий, который имеет минимальный «запас на незнание"BB, благодаря учету погрешностей методами теории вероятностей и математической статистики и учету интерференционных явлений методом импедансов.

Представленные в статье сведения о новом методе расчета не содержат некоторых необходимых подробностей, полученных дополнительными исследованиями и практикой работы, и которые составляют «ноу-хау» автора. Конечная цель нового метода — обеспечить выбор комплекса средств снижения шума системы вентиляции и кондиционирования воздуха зданий, который увеличивает, по сравнении с существующим, эффективность, уменьшая вес и стоимость СВКВ.

Технические регламенты в области промышленного и гражданского строительства пока отсутствуют, поэтому разработки в области, в частности, снижения шума СВКВ зданий актуальны и должны быть продолжены, по меньшей мере, до принятия таких регламентов .

  1. Бреховских Л.М. Волны в слоистых средах // М.: Издательство Академии наук СССР. 1957.
  2. Исакович М.А. Общая акустика // М.: Издательство «Наука», 1973.
  3. Справочник по судовой акустике. Под редакцией И.И. Клюкина и И.И. Боголепова. - Ленинград, «Судостроение», 1978.
  4. Хорошев Г.А., Петров Ю.И., Егоров Н.Ф. Борьба с шумом вентиляторов // М.: Энергоиздат, 1981.
  5. Колесников А.Е. Акустические измерения. Допущено Министерством высшего и среднего специального образования СССР в качестве учебника для студентов вузов, обучающихся по специальности «Электроакустика и ультразвуковая техника» // Ленинград, «Судостроение», 1983.
  6. Боголепов И.И. Промышленная звукоизоляция. Предисловие акад. И.А. Глебова. Теория, исследования, проектирование, изготовление, контроль // Ленинград, «Судостроение», 1986.
  7. Авиационная акустика. Ч. 2. Под ред. А.Г. Мунина. - М.: «Машиностроение», 1986.
  8. Изак Г.Д., Гомзиков Э.А. Шум на судах и методы его снижения // М.: «Транспорт», 1987.
  9. Снижение шума в зданиях и жилых районах. Под ред. Г.Л. Осипова и Е.Я. Юдина. - М.: Стройиздат, 1987.
  10. Строительные нормы и правила. Защита от шума. СНиП II-12-77. Утверждены постановлением Государственного комитета Совета Министров СССР по делам строительства от 14 июня 1977 г. №72. - М.: Госстрой России, 1997.
  11. Руководство по расчету и проектированию шумоглушения вентиляционных установок. Разработано к СНиПу II-12–77 организациями НИИ строительной физики, ГПИ сантехпоект, НИИСК. - М.: Стройиздат, 1982.
  12. Каталог шумовых характеристик технологического оборудования (к СНиП II-12–77). НИИ строительной физики Госстроя СССР // М.: Стройиздат, 1988.
  13. Строительные нормы и правила Российской Федерации. Защита от шума (Sound protection). СНиП 23-03–2003. Приняты и введены в действие постановлением Госстроя России от 30 июня 2003 г. №136. Дата введения 2004-04-01.
  14. Звукоизоляция и звукопоглощение. Учебное пособие для студентов вузов, обучающихся по специальности «Промышленное и гражданское строительство» и «Теплогазоснабжение и вентиляция» под ред. Г.Л. Осипова и В.Н. Бобылева. - М.: Издательство АСТ-Астрель, 2004.
  15. Боголепов И.И. Акустический расчет и проектирование системы вентиляции и кондиционирования воздуха. Методические указания к курсовым проектам. Санкт-Петербургский государственный политехнический университет // Санкт-Петербург. Издательство СПбОДЗПП, 2004.
  16. Боголепов И.И. Строительная акустика. Предисловие акад. Ю.С. Васильева // Санкт-Петербург. Издательство Политехнического университета, 2006.
  17. Сотников А.Г. Процессы, аппараты и системы кондиционирования воздуха и вентиляции. Теория, техника и проектирование на рубеже столетий // Санкт-Петербург, Издательство AT-Publishing, 2007.
  18. www.integral.ru. Фирма «Интеграл». Расчет уровня внешнего шума систем вентиляции по: СНиПу II-12–77 (ч. II) - «Руководство по расчету и проектированию шумоглушения вентиляционных установок». Санкт-Петербург, 2007.
  19. www.iso.org - сайт в Интернете, на котором имеется полная информация о Международной организации по стандартизации ISO, каталог и Интернет-магазин стандартов, через который можно приобрести любой действующий в настоящее время стандарт ISO в электронном или печатном виде.
  20. www.iec.ch - сайт в Интернете, на котором имеется полная информация о Международной электротехнической комиссии IEC, каталог и Интернет-магазин ее стандартов, через который можно приобрести действующий в настоящее время стандарт IEC в электронном или печатном виде.
  21. www.nitskd.ru.tc358 - сайт в Интернете, на котором имеется полная информация о работе технического комитета ТК 358 «Акустика» Федерального агентства по техническому регулированию, каталог и Интернет-магазин национальных стандартов, через который можно приобрести действующий в настоящее время необходимый российский стандарт в электронном или печатном виде.
  22. Федеральный закон от 27 декабря 2002 г. №184-ФЗ «О техническом регулировании» (с изменениями от 9 мая 2005 г.). Принят Государственной Думой 15 декабря 2002 г. Одобрен Советом Федерации 18 декабря 2002 г. О реализации настоящего Федерального закона см. приказ Госгортехнадзора РФ от 27 марта 2003 г. №54.
  23. Федеральный закон от 1 мая 2007 г. №65-ФЗ «О внесении изменений в Федеральный закон «О техническом регулировании».

Вентиляция в помещении, особенно в жилом или промышленном, должна функционировать на 100 %. Конечно, многие могут сказать, что можно просто открыть окно или дверь, чтобы проветрить. Но этот вариант может сработать только летом или весной. А что же делать зимой, когда на улице холодно?

Необходимость вентиляции

Во-первых, сразу стоит отметить, что без свежего воздуха легкие человека начинают хуже функционировать. Возможно также появление самых различных заболеваний, которые с большим процентом вероятности перерастут в хронические. Во-вторых, если здание - это жилой дом, в котором находятся дети, то надобность в вентиляции возрастает еще сильнее, так как некоторые недуги, которые могут заразить ребенка, скорее всего, останутся у него на всю жизнь. Для того чтобы избежать таких проблем, лучше всего заняться обустройством вентиляции. Стоит рассмотреть несколько вариантов. К примеру, можно заняться расчетом приточной системы вентиляции и ее установкой. Также стоит добавить, что болезни - это далеко не все проблемы.

В комнате или здании, где нет постоянного обмена воздуха, вся мебель и стены будут покрываться налетом от любого вещества, которое распыляется в воздухе. Допустим, если это кухня, то все, что жарится, варится и т. д., даст свой осадок. Кроме этого страшным врагом является пыль. Даже чистящие средства, которые призваны убирать, все равно будут оставлять свой осадок, который негативно скажется на жильцах.

Вид системы вентиляции

Конечно, прежде чем приступить к проектированию, расчету системы вентиляции или ее установке необходимо определиться с типом сети, который лучше всего подойдет. В настоящее время различают три принципиально разных вида, основная разница между которыми в их функционировании.

Вторая группа - это вытяжная. Другими словами - это обычная вытяжка, которая чаще всего устанавливается в кухонных помещениях здания. Основная задача вентиляции - это вытяжка воздуха из комнаты наружу.

Рециркуляционная. Подобная система является, пожалуй, наиболее эффективной, так как она одновременно и выкачивает воздух из помещения, и в это же время подает свежий с улицы.

Единственный вопрос, который возникает у всех далее - это, как же работает система вентиляции, почему воздух перемещается в ту или иную сторону? Для этого используется два вида источника пробуждения воздушной массы. Они могут быть естественными или механическими, то есть искусственными. Чтобы обеспечить их нормальную работу, необходимо провести верный расчет системы вентиляции.

Общий расчет сети

Как уже говорилось выше, просто выбрать и установить определенный тип будет мало. Необходимо четко определить, сколько именно воздуха необходимо выводить из помещения и сколько нужно закачивать обратно. Специалисты называют это воздухообменом, который нужно вычислить. В зависимости от полученных данных при расчете системы вентиляции и необходимо отталкиваться при выборе типа устройства.

На сегодняшний день известно большое количество разнообразных методов расчета. Они нацелены на определение различных параметров. Для некоторых систем проводят расчеты, чтобы узнать, сколько нужно удалять теплого воздуха или же испарений. Некоторые осуществляются для того, чтобы узнать, сколько воздуха необходимо для разбавления загрязнений, если это промышленное здание. Однако минус всех этих способов - требование профессиональных знаний и умений.

Что же делать, если провести расчет системы вентиляции необходимо, но такого опыта нет? Самое первое, что рекомендуется сделать - это ознакомиться с различными нормативными документами, имеющимися у каждого государства или даже региона (ГОСТ, СНиП и т. д.) В этих бумагах имеются все показания, которым должен соответствовать любой тип системы.

Кратный расчет

Одним из примеров вентиляции может стать расчет по кратностям. Такой метод довольно сложный. Однако он вполне осуществим и даст хорошие результаты.

Первое, что необходимо понять - это то, что такое кратность. Подобный термин описывает то, сколько раз воздух в помещении сменился свежим за 1 час. Такой параметр зависит от двух составляющих - это специфика строения и его площадь. Для наглядной демонстрации, будет показан расчет по формуле для здания с однократным воздухообменом. Это говорит о том, что из помещения было выведено определенное количество воздуха и одновременно с этим введено свежего воздуха такое количество, которое соответствовало объему этого же здания.

Формула для вычисления используется такая: L = n * V.

Измерение осуществляется в кубометрах/час. V - это объем комнаты, а n - это значение кратности, которое берется из таблицы.

Если проводится расчет системы с несколькими комнатами, то в формуле нужно учитывать объем всего здания без стен. Другими словами, необходимо сначала вычислить объем каждой комнаты, после чего сложить все имеющиеся результаты, а итоговое значение подставить в формулу.

Вентиляция с механическим типом устройства

Расчет механической системы вентиляции, и ее установка должна проходить по определенному плану.

Первый этап - это определение числового значения воздухообмена. Нужно определить количество вещества, которое должно поступать внутрь строения, чтобы соответствовать требованиям.

Второй этап - это определение минимальных габаритов воздухопровода. Очень важно выбрать правильное сечение устройства, так как от этого зависят такие вещи, как чистота и свежесть поступаемого воздуха.

Третий этап - это выбор типажа системы для монтажа. Это важный момент.

Четвертый этап - и проектирование системы вентиляции. Важно четко составить план-схему, по которой будет проводиться монтаж.

Необходимость в механической вентиляции возникает только в том случае, если естественный приток не справляется. Любая из сетей рассчитывается на такие параметры, как свой объем воздуха и скорость этого потока. Для механических систем этот показатель может достигать 5 м 3 /ч.

К примеру, если необходимо обеспечить естественной вентиляцией площадь в 300 м 3 /ч, то понадобится с калибром 350 мм. Если монтируется механическая система, то объем можно уменьшить в 1,5-2 раза.

Вытяжная вентиляция

Расчет как и любой другой, должен начинаться с того, что определяется производительность. Единицы измерения этого параметра для сети - м 3 /ч.

Чтобы провести эффективный расчет, необходимо знать три вещи: высота и площадь комнат, основное предназначение каждого помещения, усредненное количество людей, который одновременно будут находиться в каждой комнате.

Для того чтобы начать проводить расчет системы вентиляции и кондиционирования воздуха этого типа, необходимо определиться с кратностью. Числовое значение этого параметра установлено СНиПом. Здесь важно знать, что параметр для жилого, коммерческого или промышленного помещения будет отличаться.

Если расчеты ведутся для бытового здания, то кратность равна 1. Если речь идет об установке вентиляции в административном строении, то показатель равен 2-3. Это зависит от некоторых других условий. Чтобы успешно провести расчет, нужно знать величину обмена по кратности, а также по количеству людей. Необходимо брать наибольшее значение расхода, чтобы определить требуемую мощность системы.

Чтобы узнать кратность обмена воздуха, необходимо умножить площадь помещения на его высоту, а после этого на значение кратности (1 для бытовых, 2-3 для других).

Для того чтобы провести расчет системы вентиляции и кондиционирования на человека, необходимо знать количество потребляемого воздуха одним человеком и умножить это значение на количество людей. В среднем при минимальной активности один человек потребляет около 20 м 3 /ч, при средней активности показатель возрастает до 40 м 3 /ч, при интенсивных физических нагрузках объем увеличивает до 60 м 3 /ч.

Акустический расчет системы вентиляции

Акустический расчет - это обязательная операция, которая прилагается к расчету любой системы вентилирования помещения. Подобная операция осуществляется для того, чтобы выполнить несколько конкретных задач:

  • определить октавный спектр воздушного и структурного вентиляционного шума в расчетный точках;
  • сопоставить имеющийся шум, с допустимым шумом по гигиеническим нормам;
  • определить путь снижения шума.

Все расчеты необходимо проводить в строго установленных расчетных точках.

После того как были выбраны все мероприятия по строительно-акустическим нормам, которые призваны устранить излишний шум в помещении, проводится поверочный расчет всей системы в тех же точках, что были определены ранее. Однако сюда же нужно добавить эффективные значения, полученные в ходе этого мероприятия по снижению шума.

Для проведения вычислений нужны определенные исходные данные. Ими стали шумовые характеристики оборудования, которые назвали уровнями звуковой мощности (УЗМ). Для расчета используют среднегеометрические частоты в Гц. Если проводится ориентировочный расчет, то можно использовать корректировочные уровни шума в дБА.

Если говорить о расчетных точках, то они располагаются в местах обитания человека, а также в местах установки вентилятора.

Аэродинамический расчет системы вентиляции

Такой процесс расчета выполняется только после того как уже проведен расчет воздухообмена для строения, а также было принято решение о трассировки воздуховодов и каналов. Для того чтобы успешно провести эти вычисления, необходимо составить системы вентиляции, в которой обязательно нужно выделить такие части, как фасонные части всех воздуховодов.

Используя информацию и планы, нужно определить протяженность отдельных ветвей вентиляционной сети. Здесь важно понимать, что расчет такой системы может проводиться, чтобы решить две различных задачи - прямую или обратную. Цель проведения вычислений зависит именно от типа поставленной задачи:

  • прямая - необходимо определить габариты сечений для всех участков системы, задав при этом определенный уровень расхода воздуха, который будет проходить через них;
  • обратная - определить расход воздуха, задав определенное сечение для всех участков вентиляции.

Для того чтобы провести вычисления этого типа, необходимо разбить всю систему на несколько отдельных участков. Основная характеристика каждого выбранного фрагмента - это постоянный расход воздуха.

Программы для расчета

Так как проводить вычисления и строить схему вентиляции вручную - это очень трудоемкий и длительный процесс, были разработаны простые программы, которые способны сделать все действия самостоятельно. Рассмотрим несколько. Одна из таких программ расчета системы вентиляции - Vent-Clac. Чем она так хороша?

Подобная программа для расчетов и проектирования сетей считается одной из наиболее удобных и эффективных. Алгоритм работы этого приложения основывается на использовании формулы Альтшуля. Особенность программы в том, что она справляется хорошо как с расчетом вентиляции естественного типа, так и механического типа.

Так как ПО постоянно обновляется, стоит отметить, что последняя редакция приложения способно проводить и такие работы, как аэродинамические расчеты сопротивления всей системы вентиляции. Также может эффективно рассчитать другие дополнительные параметры, которые помогут в подборе предварительного оборудования. Для того чтобы провести эти вычисления, программе понадобятся такие данные, как расход воздуха в начале и в конце системы, а также длина основного воздуховода помещения.

Так как вручную рассчитывать все это долго и приходится разбивать вычисления на этапы, то данное приложение окажет существенную поддержку и сэкономит большое количество времени.

Санитарные нормы

Еще один вариант расчета вентиляции - по санитарным нормам. Подобные вычисления проводятся для общественных и административно-бытовых объектов. Чтобы осуществить правильные вычисления, необходимо знать среднее количество людей, которое постоянно будет находиться внутри здания. Если говорить о постоянных потребителях воздуха внутри, то им необходимо около 60 кубометров в час на одного. Но так как объекты общественного назначения посещают и временные лица, то и их тоже необходимо брать в расчет. Количество потребляемого воздуха на такого человека около 20 кубометров в час.

Если проводить все расчеты, опираясь на исходные данные из таблиц, то при получении конечных результатов станет четко видно, что количество воздуха, поступающего с улицы гораздо больше, чем потребляемого внутри здания. В таких ситуациях чаще всего прибегают к наиболее простому решению - вытяжки примерно на 195 кубометров в час. В большинстве случаев добавление такой сети создаст приемлемый баланс для существования всей системы вентиляции.

Акустичекие расчеты

Среди проблем оздоровления окружающей среды борьба с шумами является одной из актуальнейших. В крупных городах шум является одним из основных физических факторов, формирующих условия среды обитания.

Рост промышленного и жилищного строительства, бурное развитие различных видов транспорта, все большее применение в жилых и общественных зданиях сантехнического и инженерного оборудования, бытовой техники привели к тому, что уровни шума в селитебных зонах города стали сравнимы с уровнями шумов на производстве.

Шумовой режим крупных городов формируется главным образом автомобильным и рельсовым транспортом, составляющим 60-70% всех шумов.

Заметное влияние на уровень шума оказывает увеличение интенсивности воздушных перевозок, появление новых мощных самолетов и вертолетов, а также железнодорожный транспорт, открытые линии метро и метро мелкого заложения.

Вместе с тем, в некоторых крупных городах, где предпринимаются меры по улучшению шумовой обстановки наблюдается снижение уровней шума.

Шумы бывают акустические и неакустичекие, какова их разница?

Акустический шум определяется как совокупность различных по силе и частоте звуков, возникающих в результате колебательного движения частиц в упругих средах (твердых, жидких, газообразных).

Неакустические шумы - Радиоэлектронные шумы - случайные колебания токов и напряжений в радиоэлектронных устройствах, возникают в результате неравномерной эмиссии электронов в электровакуумных приборах (дробовой шум, фликкер-шум), неравномерности процессов генерации и рекомбинации носителей заряда (электронов проводимости и дырок) в полупроводниковых приборах, теплового движения носителей тока в проводниках (тепловой шум), теплового излучения Земли и земной атмосферы, а также планет, Солнца, звёзд, межзвёздной среды и т. д. (шумы космоса).

Акустический расчёт, расчет уровня шума.

В процессе строительства и эксплуатации различных объектов проблемы борьбы с шумом являются неотъемлемой частью охраны труда и защиты здоровья населения. Выступать источниками могут машины, транспортные средства, механизмы и другое оборудование. Шум, его величина воздействия и вибраций на человека зависит от уровня звукового давления, частотных характеристик.

Под нормированием шумовых характеристик понимают установление ограничений на значения этих характеристик, при которых шум, воздействующий на людей, не должен превышать допустимых уровней, регламентированных действующими санитарными нормами и правилами.

Целями акустического расчета являются:

Выявление источников шума;

Определение их шумовых характеристик;

Определение степени влияния источников шума на нормируемые объекты;

Расчет и построение индивидуальных зон акустического дискомфорта источников шума;

Разработка специальных шумозащитных мероприятий, обеспечивающих требуемый акустический комфорт.

Установка систем вентиляции и кондиционирования уже считается естественной потребностью в любом здании (будь оно жилое или административное), акустический расчет должен выполняться и для помещений подобного типа. Так, в случае не проведения расчета уровня шума, может оказаться, что в помещении очень низкий уровень звукопоглощения, а это очень усложняет процесс общения людей в нем.

Поэтому прежде чем устанавливать в помещении системы вентиляции, провести акустический расчет нужно обязательно. Если окажется, что для помещения характерны плохие акустические свойства, необходимо предложить провести ряд мероприятий, по улучшению акустической обстановки в помещении. Поэтому акустические расчеты выполняются и на установку бытовых кондиционеров.

Акустический расчет чаще всего проводится для объектов, которые имеют сложную акустику или отличаются повышенным требованиям к качеству звука.

Звуковые ощущения возникают в органах слуха при воздействии на них звуковых волн в диапазоне от 16 Гц до 22 тыс. Гц. Звук распространяется в воздухе со скоростью 344 м/с, за 3 сек. 1 км.

Величина порога слышимости зависит от частоты ощущаемых звуков и равна 10-12 Вт/м 2 на частотах близких 1000 Гц. Верхней границей является порог болевого ощущения, который в меньшей степени зависит от частоты и лежит в пределах 130 - 140 дБ (на частоте 1000 Гц по интенсивности 10 Вт/м 2, по звуковому давления).

Соотношение уровня интенсивности и частоты определяет ощущение громкости звука, т.е. звуки, имеющие различную частоту и интенсивность, могут оцениваться человеком как равногромкие.

При восприятии звуковых сигналов на определенном акустическом фоне может наблюдаться эффект маскировки сигнала.

Эффект маскировки может отрицательно сказываться в акустических индикаторах и может быть использован для улучшения акустической обстановки, т.е. в случае маскировки высокочастотного тона низкочастотным, который менее вреден для человека.

Порядок выполнения акустического расчета.

Для выполнения акустического расчета потребуются следующие данные:

Размеры помещения, для которого будет проводиться расчет уровня шума;

Основные характеристики помещения и его свойства;

Спектр шума от источника;

Характеристика преграды;

Данные о расстоянии от центра источника шума до точки акустического расчета.

При расчете, для начала определяются источники шума и их характерные свойства. Далее на исследуемом объекте выбираются точки, в которых будут проводиться расчеты. В выбранных точках объекта проводится расчет предварительного уровня звукового давления. Основываясь на полученных результатах, выполняется расчет по снижению шума до требуемых норм. Получив все необходимые данные, выполняется проект по разработке мероприятий, благодаря которым будет снижен уровень шума.

Правильно выполненный акустический расчет является залогом отличной акустики и комфорта в помещении любого размера и конструкции.

На основе выполненного акустического расчета можно предлагать следующие мероприятия для снижения уровня шума:

* установка звукоизолирующих конструкций;

* использование уплотнений в окнах, дверях, воротах;

* использование конструкций и экранов, которые поглощают звук;

*осуществление планировки и застройки селитебной территории в соответствии со СНиП;

* применение глушителей шума в вентиляционных системах и системах кондиционирования.

Проведение акустического расчета.

Работы по расчету уровней шума, оценки акустического (шумового) воздействия, а также проектирование специализированных шумозащитных мероприятий, должны осуществляться специализированной организацией, имеющей соответствующую область.

шум акустический расчет измерение

В самом простом определении основная задача акустического расчета - это оценка уровня шума, создаваемого источником шума в заданной расчетной точке с установленным качеством акустического воздействия.

Процесс проведения акустического расчета состоит из следующих основных этапов:

1. Сбор необходимых исходных данных:

Характер источников шума, режим их работы;

Акустические характеристики источников шума (в диапазоне среднегеометрических частот 63-8000 Гц);

Геометрические параметры помещения, в котором расположены источники шума;

Анализ ослабленных элементов огорождающих конструкции, через которые шум будет проникать в окружающую среду;

Геометрические и звукоизоляционные параметры ослабленных элементов огорождающих конструкций;

Анализ близлежащих объектов с установленным качеством акустического воздействия, определений допустимых уровней звука для каждого объекта;

Анализ расстояний от внешних источников шума до нормируемых объектов;

Анализ возможных экранирующих элементов на пути распространения звуковой волны (застройка, зеленые насаждения и т.д.);

Анализ ослабленных элементов огорождающих конструкций (оконные проемы, двери и т.д.), через которые шум будет проникать в нормируемые помещения, выявление их звукоизоляционной способности.

2. Акустический расчет производится на основании действующих методических указаний и рекомендаций. В основном это «Методики расчета, нормативы».

В каждой расчетной точке необходимо производить суммирование всех имеющихся источников шума.

Результатом акустического расчета являются некие значения (дБ) в октавных полосах со среднегеометрическими частотами 63-8000 Гц и эквивалентное значение уровня звука (дБА) в расчетной точке.

3. Анализ результатов расчета.

Анализ полученных результатов осуществляется сравнением значений, полученных в расчетной точке с установленными Санитарными нормами.

При необходимости, следующим этапом проведения акустического расчета может быть проектирование необходимых шумозащитных мероприятий, которые позволят снизить акустическое воздействие в расчетных точках до допустимого уровня.

Проведение инструментальных измерений.

Помимо акустических расчетов, можно провести расчет инструментальных измерений уровней шума любой сложности, в том числе:

Измерение шумового воздействия существующих систем вентиляции и кондиционирования для офисных зданий, частных квартир и т.д.;

Осуществление измерений уровней шума для аттестации рабочих мест;

Проведение работ по инструментальному измерению уровней шума в рамках проекта;

Проведение работ по инструментальному измерению уровней шума в рамках технических отчетов при утверждении границ СЗЗ;

Осуществление любых инструментальных измерений шумового воздействия.

Проведение инструментальных замеров уровней шума производится специализированной мобильной лабораторией с применением современного оборудования.

Сроки выполнения акустического расчета. Сроки выполнения работы зависят от объема расчетов и измерений. Если необходимо произвести акустический расчет для проектов жилых застроек или административных объектов, то они выполняются в среднем 1 - 3 недели. Акустический расчет для крупных или уникальных объектов (театры, органные залы) занимает больше времени, основываясь на предоставленных исходных материалах. Кроме того, на срок работы во многом влияют количество исследуемых источников шума, а также внешние факторы.

Похожие статьи

© 2024 rsrub.ru. О современных технологиях кровли. Строительный портал.