Международная система единиц (СИ). Физические величины По международной системе единиц физических величин сила

Общее понятие.

Разделом науки, изучающей измерения, является метрология.

Метрология наука об измерениях, методах и средствах обеспе­чения их единства и способах достижения требуемой точности.

В метрологии решаются следующие основные задачи : разработ­ка общей теории измерений единиц физических величин и их сис­тем, разработка методов и средств измерений, методов определения точности измерений, основ обеспечения единства и единообразия средств измерений, эталонов и образцовых средств измерений, методов передачи размеров единиц от эталонов и образцовых средств измерений к рабочим средствам измерений.

Физические величины. Международная система единиц физических величин Si.

Физическая величина – это характеристика одного из свойств фи­зического объекта (явления или процесса), общая в качественном отношении многим физическим объектам, но в количественном от­ношении индивидуальная для каждого объекта.

Значение физической величины – это оценка ее величины в виде некоторого числа принятых для нее единиц или числа по приня­той для нее шкале. Например, 120 мм – значение линейной вели­чины; 75 кг – значение массы тела, НВ190 – число твердости по Бринеллю.

Измерением физической величины называют совокупность опера­ций, выполняемых с помощью технического средства, хранящего единицу, или воспроизводящую шкалу физической величины, зак­лючающихся в сравнении (в явном или неявном виде) измеряемой величины с ее единицей или шкалой с целью получения значения этой величины в форме, наиболее удобной для использования.

В теории измерений принято, в основном, пять типов шкал : наи­менования, порядка, интервалов, отношений и абсолютная.

Можно выделить три вида физических величин , измерение которых осуществляется по различным правилам.

К первому виду физических величин относятся величины, на множестве размеров которых определены лишь отношения порядка и эквивалентности. Это отношения типа «мягче», «тверже», «теплее», «холоднее» и т. Д. К величинам такого рода относятся, например, твердость, определяемая как способность тела оказывать сопротивление проникновению в него другого тела; температура как степень нагретости тела и т. П. Существование таких отношений устанавливается теоретически или экспериментально с помощью специальных средств сравнения, а также на основе наблюдений за результатами воздействия физической величины на какие-либо объекты.

Для второго вида физических величин отношение порядка и эквивалентности имеет место, как между размерами, так и между размерностями в парах их размеров. Гак. Разности интервалов времени считаются равными, если расстояния между соответствующими отметками равны.

Третий вид составляют аддитивные физические величины. Аддитивными физическими величинами называются величины, на множестве размеров которых определены не только отношения порядка и эквивалентности, но операции сложения и вычитания. К таким величинам относятся длина, масса, сила тока и т. П. Их можно измерять по частям, а также воспроизводить с помощью многозначной меры, основанной на суммировании отдельных мер. Например, сумма масс двух тел – это масса такого тела, которое уравновешивает на равноплечих весах первые два.

Система физических величин – это совокупность взаимосвязанных физических величин, образованная в соответствии с принятыми принципами, когда одни величины принимаются за независимые, а другие являются функциями независимых величин. Система физи­ческих величин содержит основные физические величины, условно принятые в качестве независимых от других величин этой системы, и производные физические величины, определяемые через основ­ные величины этой системы.

Аддитивными физическими величинами называются величины, на множестве размеров которых определены не только отношения по­рядка и эквивалентности, но операции сложения и вычитания. К таким величинам относятся длина, масса, сила тока и т. П. Их можно измерять по частям, а также воспроизводить с помощью многозначной меры, основанной на суммировании отдельных мер. Например, сумма масс двух тел – это масса такого тела, которое уравновешивает на равноплечих весах первые два.

Основная физическая величина – это физическая величина, вхо­дящая в систему единиц и условно принятая в качестве независи­мой от других величин этой системы.

Производная единица системы единиц – единица производной фи­зической величины системы единиц, образованная в соответствии с уравнением, связывающим ее с основными единицами.

Производная единица называется когерентной, если в этом урав­нении числовой коэффициент принят равным единице. Соответ­ственно, система единиц, состоящая из основных единиц и коге­рентных производных, называется когерентной системой единиц физических величин.

Абсолютные шкалы обладают всеми признаками шкал отношений, но дополнительно в них существует естественное однозначное опреде­ление единицы измерения. Такие шкалы соответствуют относительным величинам (отношениям одноименных физических величин, описыва­емых шкалами отношений). Среди абсолютных шкал выделяются абсо­лютные шкалы, значения которых находятся в пределах от 0 до 1. Такой величиной является, например, коэффициент полезного действия.

Шкалы наименований характеризуются только отношением экви­валентности. По своей сути она является качественной, не содер­жит нуля и единицы измерения. Примером такой шкалы является оценка цвета по наименованиям (атласы цветов). Так как каждый цвет имеет множество вариаций, то такое сравнение может выполнить только опытный эксперт, обладающий соответствующими зри­тельными возможностями.

Шкалы порядка характеризуются отношением эквивалентности и порядка. Для практического использования такой шкалы необхо­димо установить ряд эталонов. Классификация объектов осуществ­ляется сравнением интенсивности оцениваемого свойства с его эта­лонным значением. К шкалам порядка относятся, например, шкала землетрясений, шкала силы ветра, шкала твердости тел и т. п.

Шкала разностей отличается от шкалы порядка тем, что кроме отношений эквивалентности и порядка добавляется эквивалентность интервалов (разностей) между различными количественными про­явлениями свойства. Она имеет условные нулевые значения, а ве­личина интервалов устанавливается по согласованию. Характерным примером такой шкалы является шкала интервалов времени. Ин­тервалы времени можно суммировать (вычитать).

Шкалы отношений описывают свойства, к которым применимы отношения эквивалентности, порядка и суммирования, а, следова­тельно, вычитания и умножения. Эти шкалы имеют естественное нулевое значение, а единицы измерений устанавливаются по согла­сованию. Для шкалы отношений достаточно одного эталона, чтобы распределить все исследуемые объекты по интенсивности измеряе­мого свойства. Примером шкалы отношений является шкала мас­сы. Масса двух объектов равна сумме масс каждого из них.

Единица физической величины – физическая величина фиксиро­ванного размера, которой условно присвоено значение, равное еди­нице, и применяемая для количественного выражения однородных физических величин. Число независимо установленных величин равно разности числа величин, входящих в систему, и числа независимых уравнений связи между величинами. Например, если скорость тела определяется по формуле υ = L/t, то независимо можно установить только две величины, а третью выразить через них.

Размерность физической величины – выражение в форме степен­ного одночлена, составленного из произведений символов основ­ных физических величин в различных степенях и отражающее связь данной величины с физическими величинами, принятыми в данной системе величин за основные, и с коэффициентом пропорциональ­ности, равным единице.

Степени символов основных величин, входящих в одночлен, мо­гут быть целыми, дробными, положительными и отрицательными.

Размерность величин обозначают знаком dim. В системе LMT размерность величин X будет:

где L , M , Т - символы величин, принятые за основные (соответ­ственно, длины, массы, времени); l , m , t – целые или дробные, положительные или отрицательные вещественные числа, которые являются показателями размерности.

Размерность физической величины является более общей характеристикой, чем определяющее величину уравнение, так как одна и та же размерность может быть присуща величинам, имеющим различную качественную сторону.

Например, работа силы A определяется уравнением A = FL ; кинетическая энергия движущегося тела – уравнением Е к = mυ 2 /2, а размерности первой и второй – одинаковы.

Над размерностями можно производить различные действия: умножения, деления, возведения в степень и извлечение корня.

Основные единицы СИ

Показатель размерности физической величины – показатель степени, в которую возведена размерность основной физической величины, входящая в размерность производной физической величины. Размерности широко используют при образовании производных единиц и проверки однородности уравнений. Если вес показатели степени размерности равны нулю, то такая физическая величина называется безразмерной. Все относительные величины (отношение одноименных величин) являются безразмерными. Учитывая необходимость охвата Международной системой единиц всех областей науки и техники, в ней в качестве основных выбраны сечь единиц. В механике такими являются единицы длины, массы и времени, в электричестве добавляется единица силы электрического тока, в теплоте – единица термодинамической тем­пературы, в оптике – единица силы света, в молекулярной физике, термодинамике и химии – единица количества вещества. Эти семь единиц соответственно: метр, килограмм, секунда, ампер. Кельвин, кандела и моль – и выбраны в качестве основных единиц СИ.

Важным принципом, который соблюден в Международной системе единиц, является ее когерентность (согласованность). Так, выбор основных единиц системы обеспечил полную согласованность механических и электрических единиц. Например, ватт – единица механи­ческой мощности (равный джоулю в секунду) равняется мощности, выделяемой электрическим током силой 1 ампер при напряжении 1 вольт. Например, единица скорости образуется с помощью уравнения, определяющего скорость прямолинейно и равномерно движущейся точки

υ =L /t , где

υ – скорость, L – длина пройденного пути, t – время. Подстановка вместо υ , L и t и их единиц СИ даст {υ }={L )/{t ) = 1 м/с. Следовательно, единицей скорости СИ является метр в секунду. Он равен скорости прямолинейно и равномерно движущейся точки, при которой эта точка за время t = 1с перемещается на расстояние L = 1м. Например, для образования единицы энергии используется

уравнение T = тυ e ,где T – кинетическая энергия; т – масса тела; t – скорость движения точки, то когерентная единица энергии СИ образуется следующим образом:

Производные единицы СИ,


Похожая информация.


Под физической величиной понимают характеристику физических объектов или явлений материального мира, общую в качественном отношении для множества объектов или явлений, но индивидуальную для каждого из них в количественном отношении. Например, масса – физическая величина. Она является общей характеристикой физических объектов в качественном отношении, но в количественном отношении для различных объектов имеет свое индивидуальное значение.

Под значением физической величины понимают ее оценку, выражаемую произведением отвлеченного числа на принятую для данной физической величины единицу. Например, в выражении для давления атмосферного воздуха р = 95,2 кПа, 95,2 – отвлеченное число, представляющее числовое значение давления воздуха, кПа – принятая в данном случае единица давления.

Под единицей физической величины понимают физическую величину, фиксированную по размеру и принятую в качестве основы для количественной оценки конкретных физических величин. Например, в качестве единиц длины применяют метр, сантиметр и др.

Одной из важнейших характеристик физической величины является ее размерность. Размерность физической величины отражает связь данной величины с величинами, принятыми за основные в рассматриваемой системе величин.

Система величин, которая определяется Международной системой единиц СИ и которая принята в России, содержит семь основных системных величин, представленных в Табл.1.1.

Существуют две дополнительные единицы СИ – радиан и стерадиан, характеристики которых представлены в Табл.1.2.

Из основных и дополнительных единиц СИ образованы 18 производных единиц СИ, которым присвоены специальные, обязательные к применению наименования. Шестнадцать единиц названы в честь ученых, остальные две – люкс и люмен (см. Табл.1.3).

Специальные наименования единиц могут быть использованы при образовании других производных единиц. Производными единицами, не имеющими специального обязательного наименования являются: площадь, объем, скорость, ускорение, плотность, импульс, момент силы и др.

Наравне с единицами СИ допускается применять десятичные кратные и дольные от них единицы. В Табл.1.4 представлены наименования и обозначения приставок таких единиц и их множители. Такие приставки называются приставками СИ.

Выбор той или иной десятичной кратной или дольной единицы прежде всего определяется удобством ее применения на практике. В принципе выбирают такие кратные и дольные единицы, при которых числовые значения величин находятся в диапазоне от 0,1 до 1000. Например, вместо 4000000 Па лучше применять 4 МПа.

Таблица 1.1. Основные единицы СИ

Величина Единица
Наименование Размерность Рекомендуемое обозначение Наименование Обозначение Определение
международное русское
Длина L l метр m м Метр равен расстоянию, проходимому в вакууме плоской электромагнитной волной за 1/299792458 долей секунды км, см, мм, мкм, нм
Масса М m килограмм kg кг Килограмм равен массе международного прототипа килограмма Мг, г, мг, мкг
Время Т t секунда s с Секунда равна 9192631770 периодам излучения при переходе между двумя сверхтонкими уровнями основного состояния атома цезия-133 кс, мс, мкс, нс
Сила электрического тока I I ампер А А Ампер равен силе изменяющегося тока, который при прохождении по двум параллельным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 м один от другого, вызвал бы на каждом участке проводника длиной 1 м силу взаимодействия 2·10 -7 Н кА, мА, мкА, нА, пА
Термодинамическая температура T кельвин* К К Кельвин равен 1/273,16 части термодинамической температуры тройной точки воды МК, кК, мК, мкК
Количество вещества N n; n моль mol моль Моль равен количеству вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0,012 кг кмоль, ммоль, мкмоль
Сила света J J кандела cd кд Кандела равна силе света в заданном направлении источника, испускающего монохроматическое излучение частостей 540·10 12 Гц, сила излучения которого в этом направлении составляет 1/683 Вт/ср

* Кроме температуры Кельвина (обозначение Т ) допускается применять также температуру Цельсия (обозначение t ), определяемую выражением t = Т – 273,15 К. Температура Кельвина выражается в кельвинах, а температура Цельсия – в градусах Цельсия (°С). Интервал или разность температур Кельвина выражают только в кельвинах. Интервал или разность температур Цельсия допускается выражать как в кельвинах, так и в градусах Цельсия.

Таблица 1.2

Дополнительные единицы СИ

Величина Единица Обозначения рекомендуемых кратных и дольных единиц
Наименование Размерность Рекомендуемое обозначение Определяющее уравнение Наименование Обозначение Определение
международное русское
Плоский угол 1 a, b, g, q, n, j a = s /r радиан rad рад Радиан равен углу между двумя радиусами окружности, длина дуги между которыми равна радиусу мрад, мкрад
Телесный угол 1 w, W W = S /r 2 стерадиан sr ср Стерадиан равен телесному углу с вершиной в центре сферы, вырезающему на поверхности сферы площадь, равную площади квадрата со стороной, равной радиусу сферы

Таблица 1.3

Производные единицы СИ, имеющие специальные наименования

Величина Единица
Наименование Размерность Наименование Обозначение
международное русское
Частота Т -1 герц Hz Гц
Сила, вес LMT -2 ньютон N Н
Давление, механическое напряжение, модуль упругости L -1 MT -2 паскаль Pa Па
Энергия, работа, количество теплоты L 2 MT -2 джоуль J Дж
Мощность, поток энергии L 2 MT -3 ватт W Вт
Электрический заряд (количество электричества) ТI кулон С Кл
Электрическое напряжение, электрический потенциал, разность электрических потенциалов, электродвижущая сила L 2 MT -3 I -1 вольт V В
Электрическая емкость L -2 M -1 T 4 I 2 фарад F Ф
Электрическое сопротивление L 2 MT -3 I -2 ом Ом
Электрическая проводимость L -2 M -1 T 3 I 2 сименс S См
Поток магнитной индукции, магнитный поток L 2 MT -2 I -1 вебер Wb Вб
Плотность магнитного потока, магнитная индукция MT -2 I -1 тесла Т Тл
Индуктивность, взаимная индуктивность L 2 MT -2 I -2 генри Н Гн
Световой поток J люмен lm лм
Освещенность L -2 J люкс lx лк
Активность нуклида в радиоактивном источнике T -1 беккерель Bq Бк
Поглощенная доза излучения, керма L 2 T -2 грей Gy Гр
Эквивалентная доза излучения L 2 T -2 зиверт Sv Зв

Таблица 1.4

Наименования и обозначения приставок СИ для образования десятичных кратных и дольных единиц и их множители

Наименование приставки Обозначение приставки Множитель
международное русское
экса E Э 10 18
пета P П 10 15
тера T Т 10 12
гига G Г 10 9
мега M М 10 6
кило k к 10 3
гекто* h г 10 2
дека* da да 10 1
деци* d д 10 -1
санти* c с 10 -2
милли m м 10 -3
микро мк 10 -6
нано n н 10 -9
пико p п 10 -12
фемто f ф 10 -15
атто a а 10 -18

* Приставки "гекто", "дека", "деци" и "санти" допускается применять только для единиц, получивших широкое распространение, например: дециметр, сантиметр, декалитр, гектолитр.

МАТЕМАТИЧЕСКИЕ ОПЕРАЦИИ С ПРИБЛИЖЕННЫМИ ЧИСЛАМИ

В результате измерений, а также при проведении многих математических операций получаются приближенные значения искомых величин. Поэтому необходимо рассмотреть ряд правил вычислений с приближенными значениями. Эти правила позволяют уменьшить объем вычислительной работы и исключить дополнительные погрешности. Приближенные значения имеют такие величины, как , логарифмы и т. п., различные физические постоянные, результаты измерений.

Как известно, любое число записывают с помощью цифр: 1, 2, …, 9, 0; при этом значащими цифрами считают 1, 2, …, 9. Нуль может быть как значащей цифрой, если он стоит в середине или конце числа, так и незначащей, если он стоит в десятичной дроби с левой стороны и указывает лишь разряд остальных цифр.

  • 1 Общие сведения
  • 2 История
  • 3 Единицы системы СИ
    • 3.1 Основные единицы
    • 3.2 Производные единицы
  • 4 Единицы, не входящие в СИ
  • Приставки

Общие сведения

Система СИ была принята XI Генеральной конференцией по мерам и весам, некоторые последующие конференции внесли в СИ ряд изменений.

Система СИ определяет семь основных и производные единицы измерения, а также набор . Установлены стандартные сокращённые обозначения для единиц измерения и правила записи производных единиц.

В России действует ГОСТ 8.417-2002, предписывающий обязательное использование СИ. В нем перечислены единицы измерения, приведены их русские и международные названия и установлены правила их применения. По этим правилам в международных документах и на шкалах приборов допускается использовать только международные обозначения. Во внутренних документах и публикациях можно использовать либо международные либо русские обозначения (но не те и другие одновременно).

Основные единицы : килограмм, метр, секунда, ампер, кельвин, моль и кандела. В рамках СИ считается, что эти единицы имеют независимую размерность, т. е. ни одна из основных единиц не может быть получена из других.

Производные единицы получаются из основных с помощью алгебраических действий, таких как умножение и деление. Некоторым из производных единиц в Системе СИ присвоены собственные названия.

Приставки можно использовать перед названиями единиц измерения; они означают, что единицу измерения нужно умножить или разделить на определенное целое число, степень числа 10. Например приставка «кило» означает умножение на 1000 (километр = 1000 метров). Приставки СИ называют также десятичными приставками.

История

Система СИ основана на метрической системе мер, которая была создана французскими учеными и впервые была широко внедрена после Великой Французской революции. До введения метрической системы, единицы измерения выбирались случайно и независимо друг от друга. Поэтому пересчет из одной единицы измерения в другую был сложным. К тому же в разных местах применялись разные единицы измерения, иногда с одинаковыми названиями. Метрическая система должна была стать удобной и единой системой мер и весов.

В 1799 г. были утверждены два эталона - для единицы измерения длины (метр) и для единицы измерения веса (килограмм).

В 1874 г. была введена система СГС, основанная на трех единицах измерения - сантиметр, грамм и секунда. Были также введены десятичные приставки от микро до мега.

В 1889 г. 1-ая Генеральная конференция по мерам и весам приняла систему мер, сходную с СГС, но основанную на метре, килограмме и секунде, т. к. эти единицы были признаны более удобными для практического использования.

В последующем были введены базовые единицы для измерения физических величин в области электричества и оптики.

В 1960 г. XI Генеральная конференция по мерам и весам приняла стандарт, который впервые получил название «Международная система единиц (СИ)».

В 1971 г. IV Генеральная конференция по мерам и весам внесла изменения в СИ, добавив, в частности, единицу измерения количества вещества (моль).

В настоящее время СИ принята в качестве законной системы единиц измерения большинством стран мира и почти всегда используется в области науки (даже в тех странах, которые не приняли СИ).

Единицы системы СИ

После обозначений единиц Системы СИ и их производных точка не ставится, в отличие от обычных сокращений.

Основные единицы

Величина Единица измерения Обозначение
русское название международное название русское международное
Длина метр metre (meter) м m
Масса килограмм kilogram кг kg
Время секунда second с s
Сила электрического тока ампер ampere А A
Термодинамическая температура кельвин kelvin К K
Сила света кандела candela кд cd
Количество вещества моль mole моль mol

Производные единицы

Производные единицы могут быть выражены через основные с помощью математических операций умножения и деления. Некоторым из производных единиц, для удобства, присвоены собственные названия, такие единицы тоже можно использовать в математических выражениях для образования других производных единиц.

Математическое выражение для производной единицы измерения вытекает из физического закона, с помощью которого эта единица измерения определяется или определения физической величины, для которой она вводится. Например, скорость - это расстояние, которое тело проходит в единицу времени. Соответственно, единица измерения скорости - м/с (метр в секунду).

Часто одна и та же единица измерения может быть записана по разному, с помощью разного набора основных и производных единиц (см., например, последнюю колонку в таблице ). Однако, на практике используются установленные (или просто общепринятые) выражения, которые наилучшим образом отражают физический смысл измеряемой величины. Например, для записи значения момента силы следует использовать Н×м, и не следует использовать м×Н или Дж.

Производные единицы с собственными названиями
Величина Единица измерения Обозначение Выражение
русское название международное название русское международное
Плоский угол радиан radian рад rad м×м -1 = 1
Телесный угол стерадиан steradian ср sr м 2 ×м -2 = 1
Температура по шкале Цельсия градус Цельсия °C degree Celsius °C K
Частота герц hertz Гц Hz с -1
Сила ньютон newton Н N кг×м/c 2
Энергия джоуль joule Дж J Н×м = кг×м 2 /c 2
Мощность ватт watt Вт W Дж/с = кг×м 2 /c 3
Давление паскаль pascal Па Pa Н/м 2 = кг?м -1 ?с 2
Световой поток люмен lumen лм lm кд×ср
Освещённость люкс lux лк lx лм/м 2 = кд×ср×м -2
Электрический заряд кулон coulomb Кл C А×с
Разница потенциалов вольт volt В V Дж/Кл = кг×м 2 ×с -3 ×А -1
Сопротивление ом ohm Ом Ω В/А = кг×м 2 ×с -3 ×А -2
Ёмкость фарад farad Ф F Кл/В = кг -1 ×м -2 ×с 4 ×А 2
Магнитный поток вебер weber Вб Wb кг×м 2 ×с -2 ×А -1
Магнитная индукция тесла tesla Тл T Вб/м 2 = кг×с -2 ×А -1
Индуктивность генри henry Гн H кг×м 2 ×с -2 ×А -2
Электрическая проводимость сименс siemens См S Ом -1 = кг -1 ×м -2 ×с 3 А 2
Радиоактивность беккерель becquerel Бк Bq с -1
Поглощённая доза ионизирующего излучения грэй gray Гр Gy Дж/кг = м 2 /c 2
Эффективная доза ионизирующего излучения зиверт sievert Зв Sv Дж/кг = м 2 /c 2
Активность катализатора катал katal кат kat mol×s -1

Единицы, не входящие в Систему СИ

Некоторые единицы измерения, не входящие в Систему СИ, по решению Генеральной конференции по мерам и весам «допускаются для использования совместно с СИ».

Единица измерения Международное название Обозначение Величина в единицах СИ
русское международное
минута minute мин min 60 с
час hour ч h 60 мин = 3600 с
сутки day сут d 24 ч = 86 400 с
градус degree ° ° (П/180) рад
угловая минута minute (1/60)° = (П/10 800)
угловая секунда second (1/60)′ = (П/648 000)
литр litre (liter) л l, L 1 дм 3
тонна tonne т t 1000 кг
непер neper Нп Np
бел bel Б B
электронвольт electronvolt эВ eV 10 -19 Дж
атомная единица массы unified atomic mass unit а. е. м. u =1,49597870691 -27 кг
астрономическая единица astronomical unit а. е. ua 10 11 м
морская миля nautical mile миля 1852 м (точно)
узел knot уз 1 морская миля в час = (1852/3600) м/с
ар are а a 10 2 м 2
гектар hectare га ha 10 4 м 2
бар bar бар bar 10 5 Па
ангстрем ångström Å Å 10 -10 м
барн barn б b 10 -28 м 2

Чтобы исключить произвольный выбор единиц физических величин, обеспечить единообразное выражение и адекватное понимание качества параметров, характеристик и свойств различных объектов, процессов, состояний, т.е. чтобы обеспечить условия единства измерений, единицы физических величин должны быть общепринятыми и общепризнанными. Этим требованиям полностью отвечает Международная система единиц физических величин (СИ), являющаяся современной формой представления и развития метрической системы мер.

Достоинства системы СИ таковы:

  • ? универсальность, которая подразумевает охват ею всех областей науки, техники, производства; все производные единицы образованы по единому правилу. Это дает возможность создать новые производные единицы по мере развития науки и техники;
  • ? когерентность, которая позволяет до минимума упростить расчетные формулы за счет освобождения от переводных коэффициентов (когда числовой множитель равен 1). Например, скорость движения тел может быть выражена соотношением V = = L/t, где L - длина пути в метрах; t - время движения в секундах. Подстановка размерности указанных величин в формулу дает V = = 1м/с;
  • ? унификация единиц всех областей измерений, под которой понимают приведение единиц к единообразию на основе рационального сокращения числа их разновидностей.

По условной зависимости от других величин единицы подразделяют на основные (независимые физические величины, находящиеся в основной системе единиц) и производные (условно зависимые от основных величин).

В системе СИ имеются семь основных и две дополнительные единицы. Дополнительные единицы используют для образования производных единиц, зависящих от определенных условий, связанных с плоским и телесным углами.

Основные и дополнительные единицы Международной системы приведены в табл. 1.1.

Таблица 1.1

Единицы Международной системы (СИ)

Наименование

физической

величины

Обозначение

физической

величины

Наименова- ние единицы

Обозначение

международное

Основные единицы

килограмм

Сила электрического тока

Термодинамическая температура

Окончание

Решениями Генеральной конференции по мерам и весам установлены следующие определения основных единиц:

U метр - длина пути, проходимого светом в вакууме за 1/299792458 долю секунды;

  • ? килограмм - единица массы, равная массе международного прототипа килограмма;
  • ? секунда равна 9 192 631 770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133;
  • ? ампер равен силе неизменяющегося тока, который, проходя по двум нормальным параллельным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 м один от другого, вызывает между проводниками силу взаимодействия, равную 2 10 7 Н на каждый метр длины;
  • ? кельвин - единица термодинамической температуры, равная 1/273,16 части термодинамической температуры тройной точки воды;
  • ? кандела равна силе света в заданном направлении источника, испускающего монохроматическое излучение частотой 540 10 12 Гц, энергетическая сила света которого в этом направлении составляет 1/683 Вт/ср;
  • ? моль - количество вещества системы, содержащей столько же структурных элементов, сколько атомов содержится в углероде-12 массой 0,012 кг.

Дополнительные единицы - это единицы измерения плоского и телесного угла (радиан и стерадиан). Они не включены в основные из-за трудностей в трактовке размерностей величин, связанных с вращением.

Их нельзя отнести и к производным, так как они не зависят от основных величин. Эти единицы не зависят от размера единицы длины.

Радиан - единица плоского угла, равная углу между двумя радиусами окружности, длина дуги между которыми равна радиусу. В градусном исчислении 1 рад = 57° 17"45”.

Стерадиан - единица, равная телесному углу с вершиной в центре сферы, вырезающему на поверхности сферы площадь, равную площади квадрата со стороной, равной радиусу сферы.

Производные единицы СИ образуются из основных и дополнительных единиц, исходя из уравнений между физическими величинами. Производные единицы СИ, имеющие специальные наименования, приведены в табл. 1.2.

Таблица 1.2

Производные единицы СИ, имеющие специальные наименования

Наименование величины

Наименование

Обозначение

международное

Сила, вес

Давление механического напряжения, модуль упругости

Энергия, работа, количество теплоты

Мощность, поток энергии

Вт

Электрическое напряжение, электрический потенциал, электродвижущая сила, разность электрических потенциалов

Электрическая емкость

Электрическое сопротивление

Электрическая проводимость

Поток магнитной индукции, магнитный поток

Плотность магнитного потока, магнитная индукция

Индуктивность, взаимная индуктивность

Световой поток

Окончание

Для того чтобы не получались слишком большие или малые значения физических величин, в СИ установлено применение десятичных кратных и дольных единиц СИ, которые образуются с помощью множителей и содержат приставки, соответствующие множителям (табл. 1.3).

Таблица 1.3

Множители единиц и приставки

Множитель

Приставка

Обозначение приставки

международное

Образованные таким образом наименования кратных и дольных единиц физических величин пишутся слитно с наименованием основной или производной единицы СИ, например километр - км, мегаватт - МВт, микрометр - мкм, милливольт - мВ и др. Две и более приставки применять нельзя.

В принципе, можно представить себе какое угодно большое число разных систем единиц, но широкое распространение получили лишь несколько. Во всем мире для научных и технических измерений и в большинстве стран в промышленности и быту пользуются метрической системой.

Основные единицы.

В системе единиц для каждой измеряемой физической величины должна быть предусмотрена соответствующая единица измерения. Таким образом, отдельная единица измерения нужна для длины, площади, объема, скорости и т.д., и каждую такую единицу можно определить, выбрав тот или иной эталон. Но система единиц оказывается значительно более удобной, если в ней всего лишь несколько единиц выбраны в качестве основных, а остальные определяются через основные. Так, если единицей длины является метр, эталон которого хранится в Государственной метрологической службе, то единицей площади можно считать квадратный метр, единицей объема – кубический метр, единицей скорости – метр в секунду и т.д.

Удобство такой системы единиц (особенно для ученых и инженеров, которые гораздо чаще встречаются с измерениями, чем остальные люди) в том, что математические соотношения между основными и производными единицами системы оказываются более простыми. При этом единица скорости есть единица расстояния (длины) в единицу времени, единица ускорения – единица изменения скорости в единицу времени, единица силы – единица ускорения единицы массы и т.д. В математической записи это выглядит так: v = l /t , a = v /t , F = ma = ml /t 2 . Представленные формулы показывают «размерность» рассматриваемых величин, устанавливая соотношения между единицами. (Аналогичные формулы позволяют определить единицы для таких величин, как давление или сила электрического тока.) Такие соотношения носят общий характер и выполняются независимо от того, в каких единицах (метр, фут или аршин) измеряется длина и какие единицы выбраны для других величин.

В технике за основную единицу измерения механических величин обычно принимают не единицу массы, а единицу силы. Таким образом, если в системе, наиболее употребительной в физических исследованиях, металлический цилиндр принимается за эталон массы, то в технической системе он рассматривается как эталон силы, уравновешивающей действующую на него силу тяжести. Но поскольку сила тяжести неодинакова в разных точках на поверхности Земли, для точной реализации эталона необходимо указание местоположения. Исторически было принято местоположение на уровне моря на географической широте 45° . В настоящее же время такой эталон определяется как сила, необходимая для того, чтобы придать указанному цилиндру определенное ускорение. Правда, в технике измерения проводятся, как правило, не со столь высокой точностью, чтобы нужно было заботиться о вариациях силы тяжести (если речь не идет о градуировке измерительных приборов).

Немало путаницы связано с понятиями массы, силы и веса. Дело в том, что существуют единицы всех этих трех величин, носящие одинаковые названия. Масса – это инерционная характеристика тела, показывающая, насколько трудно выводится оно внешней силой из состояния покоя или равномерного и прямолинейного движения. Единица силы есть сила, которая, воздействуя на единицу массы, изменяет ее скорость на единицу скорости в единицу времени.

Все тела притягиваются друг к другу. Таким образом, всякое тело вблизи Земли притягивается к ней. Иначе говоря, Земля создает действующую на тело силу тяжести. Эта сила называется его весом. Сила веса, как указывалось выше, неодинакова в разных точках на поверхности Земли и на разной высоте над уровнем моря из-за различий в гравитационном притяжении и в проявлении вращения Земли. Однако полная масса данного количества вещества неизменна; она одинакова и в межзвездном пространстве, и в любой точке на Земле.

Точные эксперименты показали, что сила тяжести, действующая на разные тела (т.е. их вес), пропорциональна их массе. Следовательно, массы можно сравнивать на весах, и массы, оказавшиеся одинаковыми в одном месте, будут одинаковы и в любом другом месте (если сравнение проводить в вакууме, чтобы исключить влияние вытесняемого воздуха). Если же некое тело взвешивать на пружинных весах, уравновешивая силу тяжести силой растянутой пружины, то результаты измерения веса будут зависеть от места, где проводятся измерения. Поэтому пружинные весы нужно корректировать на каждом новом месте, чтобы они правильно показывали массу. Простота же самой процедуры взвешивания явилась причиной того, что сила тяжести, действующая на эталонную массу, была принята за независимую единицу измерения в технике. ТЕПЛОТА.

Метрическая система единиц.

Метрическая система – это общее название международной десятичной системы единиц, основными единицами которой являются метр и килограмм. При некоторых различиях в деталях элементы системы одинаковы во всем мире.

История.

Метрическая система выросла из постановлений, принятых Национальным собранием Франции в 1791 и 1795 по определению метра как одной десятимиллионной доли участка земного меридиана от Северного полюса до экватора.

Декретом, изданным 4 июля 1837, метрическая система была объявлена обязательной к применению во всех коммерческих сделках во Франции. Она постепенно вытеснила местные и национальные системы в других странах Европы и была законодательно признана как допустимая в Великобритании и США. Соглашением, подписанным 20 мая 1875 семнадцатью странами, была создана международная организация, призванная сохранять и совершенствовать метрическую систему.

Ясно, что, определяя метр как десятимиллионную долю четверти земного меридиана, создатели метрической системы стремились добиться инвариантности и точной воспроизводимости системы. За единицу массы они взяли грамм, определив его как массу одной миллионной кубического метра воды при ее максимальной плотности. Поскольку было бы не очень удобно проводить геодезические измерения четверти земного меридиана при каждой продаже метра ткани или уравновешивать корзинку картофеля на рынке соответствующим количеством воды, были созданы металлические эталоны, с предельной точностью воспроизводящие указанные идеальные определения.

Вскоре выяснилось, что металлические эталоны длины можно сравнивать друг с другом, внося гораздо меньшую погрешность, чем при сравнении любого такого эталона с четвертью земного меридиана. Кроме того, стало ясно, что и точность сравнения металлических эталонов массы друг с другом гораздо выше точности сравнения любого подобного эталона с массой соответствующего объема воды.

В связи с этим Международная комиссия по метру в 1872 постановила принять за эталон длины «архивный» метр, хранящийся в Париже, «такой, каков он есть». Точно так же члены Комиссии приняли за эталон массы архивный платино-иридиевый килограмм, «учитывая, что простое соотношение, установленное создателями метрической системы, между единицей веса и единицей объема представляется существующим килограммом с точностью, достаточной для обычных применений в промышленности и торговле, а точные науки нуждаются не в простом численном соотношении подобного рода, а в предельно совершенном определении этого соотношения». В 1875 многие страны мира подписали соглашение о метре, и этим соглашением была установлена процедура координации метрологических эталонов для мирового научного сообщества через Международное бюро мер и весов и Генеральную конференцию по мерам и весам.

Новая международная организация незамедлительно занялась разработкой международных эталонов длины и массы и передачей их копий всем странам-участницам.

Эталоны длины и массы, международные прототипы.

Международные прототипы эталонов длины и массы – метра и килограмма – были переданы на хранение Международному бюро мер и весов, расположенному в Севре – пригороде Парижа. Эталон метра представлял собой линейку из сплава платины с 10% иридия, поперечному сечению которой для повышения изгибной жесткости при минимальном объеме металла была придана особая X-образная форма. В канавке такой линейки была продольная плоская поверхность, и метр определялся как расстояние между центрами двух штрихов, нанесенных поперек линейки на ее концах, при температуре эталона, равной 0° С. За международный прототип килограмма была принята масса цилиндра, сделанного из того же платино-иридиевого сплава, что и эталон метра, высотой и диаметром около 3,9 см. Вес этой эталонной массы, равной 1 кг на уровне моря на географической широте 45° , иногда называют килограмм-силой. Таким образом, ее можно использовать либо как эталон массы для абсолютной системы единиц, либо как эталон силы для технической системы единиц, в которой одной из основных единиц является единица силы.

Международные прототипы были выбраны из значительной партии одинаковых эталонов, изготовленных одновременно. Другие эталоны этой партии были переданы всем странам-участницам в качестве национальных прототипов (государственных первичных эталонов), которые периодически возвращаются в Международное бюро для сравнения с международными эталонами. Сравнения, проводившиеся в разное время с тех пор, показывают, что они не обнаруживают отклонений (от международных эталонов), выходящих за пределы точности измерений.

Международная система СИ.

Метрическая система была весьма благосклонно встречена учеными 19 в. частично потому, что она предлагалась в качестве международной системы единиц, частично же по той причине, что ее единицы теоретически предполагались независимо воспроизводимыми, а также благодаря ее простоте. Ученые начали выводить новые единицы для разных физических величин, с которыми они имели дело, основываясь при этом на элементарных законах физики и связывая эти единицы с единицами длины и массы метрической системы. Последняя все больше завоевывала различные европейские страны, в которых ранее имело хождение множество не связанных друг с другом единиц для разных величин.

Хотя во всех странах, принявших метрическую систему единиц, эталоны метрических единиц были почти одинаковы, возникли различные расхождения в производных единицах между разными странами и разными дисциплинами. В области электричества и магнетизма появились две отдельные системы производных единиц: электростатическая, основанная на силе, с которой действуют друг на друга два электрических заряда, и электромагнитная, основанная на силе взаимодействия двух гипотетических магнитных полюсов.

Положение еще более усложнилось с появлением системы т.н. практических электрических единиц, введенной в середине 19 в. Британской ассоциацией содействия развитию науки для удовлетворения запросов быстро развивающейся техники проводной телеграфной связи. Такие практические единицы не совпадают с единицами обеих названных выше систем, но от единиц электромагнитной системы отличаются лишь множителями, равными целым степеням десяти.

Таким образом, для столь обычных электрических величин, как напряжение, ток и сопротивление, существовало несколько вариантов принятых единиц измерения, и каждому научному работнику, инженеру, преподавателю приходилось самому решать, каким из этих вариантов ему лучше пользоваться. В связи с развитием электротехники во второй половине 19 и первой половине 20 вв. находили все более широкое применение практические единицы, которые стали в конце концов доминировать в этой области.

Для устранения такой путаницы в начале 20 в. было выдвинуто предложение объединить практические электрические единицы с соответствующими механическими, основанными на метрических единицах длины и массы, и построить некую согласованную (когерентную) систему. В 1960 XI Генеральная конференция по мерам и весам приняла единую Международную систему единиц (СИ), дала определение основных единиц этой системы и предписала употребление некоторых производных единиц, «не предрешая вопроса о других, которые могут быть добавлены в будущем». Тем самым впервые в истории международным соглашением была принята международная когерентная система единиц. В настоящее время она принята в качестве законной системы единиц измерения большинством стран мира.

Международная система единиц (СИ) представляет собой согласованную систему, в которой для любой физической величины, такой, как длина, время или сила, предусматривается одна и только одна единица измерения. Некоторым из единиц даны особые названия, примером может служить единица давления паскаль, тогда как названия других образуются из названий тех единиц, от которых они произведены, например единица скорости – метр в секунду. Основные единицы вместе с двумя дополнительными геометрического характера представлены в табл. 1. Производные единицы, для которых приняты особые названия, даны в табл. 2. Из всех производных механических единиц наиболее важное значение имеют единица силы ньютон, единица энергии джоуль и единица мощности ватт. Ньютон определяется как сила, которая придает массе в один килограмм ускорение, равное одному метру за секунду в квадрате. Джоуль равен работе, которая совершается, когда точка приложения силы, равной одному ньютону, перемещается на расстояние один метр в направлении действия силы. Ватт – это мощность, при которой работа в один джоуль совершается за одну секунду. Об электрических и других производных единицах будет сказано ниже. Официальные определения основных и дополнительных единиц таковы.

Метр – это длина пути, проходимого в вакууме светом за 1/299 792 458 долю секунды. Это определение было принято в октябре 1983.

Килограмм равен массе международного прототипа килограмма.

Секунда – продолжительность 9 192 631 770 периодов колебаний излучения, соответствующего переходам между двумя уровнями сверхтонкой структуры основного состояния атома цезия-133.

Кельвин равен 1/273,16 части термодинамической температуры тройной точки воды.

Моль равен количеству вещества, в составе которого содержится столько же структурных элементов, сколько атомов в изотопе углерода-12 массой 0,012 кг.

Радиан – плоский угол между двумя радиусами окружности, длина дуги между которыми равна радиусу.

Стерадиан равен телесному углу с вершиной в центре сферы, вырезающему на ее поверхности площадь, равную площади квадрата со стороной, равной радиусу сферы.

Для образования десятичных кратных и дольных единиц предписывается ряд приставок и множителей, указываемых в табл. 3.

Таблица 3. ПРИСТАВКИ И МНОЖИТЕЛИ ДЕСЯТИЧНЫХ КРАТНЫХ И ДОЛЬНЫХ ЕДИНИЦ МЕЖДУНАРОДНОЙ СИСТЕМЫ СИ

экса деци
пета санти
тера милли
гига микро

мк

мега нано
кило пико
гекто фемто
дека

да

атто

Таким образом, километр (км) – это 1000 м, а миллиметр – 0,001 м. (Эти приставки применимы ко всем единицам, как, например, в киловаттах, миллиамперах и т.д.)

Первоначально предполагалось, что одной из основных единиц должен быть грамм, и это отразилось в названиях единиц массы, но в настоящее время основной единицей является килограмм. Вместо названия мегаграмм употребляется слово «тонна». В физических дисциплинах, например для измерения длины волны видимого или инфракрасного света, часто применяется миллионная доля метра (микрометр). В спектроскопии длины волн часто выражают в ангстремах (Å); ангстрем равен одной десятой нанометра, т.е. 10 - 10 м. Для излучений с меньшей длиной волны, например рентгеновского, в научных публикациях допускается пользоваться пикометром и икс-единицей (1 икс-ед. = 10 –13 м). Объем, равный 1000 кубических сантиметров (одному кубическому дециметру), называется литром (л).

Масса, длина и время.

Все основные единицы системы СИ, кроме килограмма, в настоящее время определяются через физические константы или явления, которые считаются неизменными и с высокой точностью воспроизводимыми. Что же касается килограмма, то еще не найден способ его реализации с той степенью воспроизводимости, которая достигается в процедурах сравнения различных эталонов массы с международным прототипом килограмма. Такое сравнение можно проводить путем взвешивания на пружинных весах, погрешность которых не превышает 1Ч 10 –8 . Эталоны кратных и дольных единиц для килограмма устанавливаются комбинированным взвешиванием на весах.

Поскольку метр определяется через скорость света, его можно воспроизводить независимо в любой хорошо оборудованной лаборатории. Так, интерференционным методом штриховые и концевые меры длины, которыми пользуются в мастерских и лабораториях, можно проверять, проводя сравнение непосредственно с длиной волны света. Погрешность при таких методах в оптимальных условиях не превышает одной миллиардной (1Ч 10 –9). С развитием лазерной техники подобные измерения весьма упростились, и их диапазон существенно расширился.

Точно так же секунда в соответствии с ее современным определением может быть независимо реализована в компетентной лаборатории на установке с атомным пучком. Атомы пучка возбуждаются высокочастотным генератором, настроенным на атомную частоту, и электронная схема измеряет время, считая периоды колебаний в цепи генератора. Такие измерения можно проводить с точностью порядка 1Ч 10 –12 – гораздо более высокой, чем это было возможно при прежних определениях секунды, основанных на вращении Земли и ее обращении вокруг Солнца. Время и его обратная величина – частота – уникальны в том отношении, что их эталоны можно передавать по радио. Благодаря этому всякий, у кого имеется соответствующее радиоприемное оборудование, может принимать сигналы точного времени и эталонной частоты, почти не отличающиеся по точности от передаваемых в эфир.

Механика.

Температура и теплота.

Механические единицы не позволяют решать все научные и технические задачи без привлечения каких-либо других соотношений. Хотя работа, совершаемая при перемещении массы против действия силы, и кинетическая энергия некой массы по своему характеру эквивалентны тепловой энергии вещества, удобнее рассматривать температуру и теплоту как отдельные величины, не зависящие от механических.

Термодинамическая шкала температуры.

Единица термодинамической температуры Кельвина (К), называемая кельвином, определяется тройной точкой воды, т.е. температурой, при которой вода находится в равновесии со льдом и паром. Эта температура принята равной 273,16 К, чем и определяется термодинамическая шкала температуры. Данная шкала, предложенная Кельвином, основана на втором начале термодинамики. Если имеются два тепловых резервуара с постоянной температурой и обратимая тепловая машина, передающая тепло от одного из них другому в соответствии с циклом Карно, то отношение термодинамических температур двух резервуаров дается равенством T 2 /T 1 = –Q 2 Q 1 , где Q 2 и Q 1 – количества теплоты, передаваемые каждому из резервуаров (знак «минус» говорит о том, что у одного из резервуаров теплота отбирается). Таким образом, если температура более теплого резервуара равна 273,16 К, а теплота, отбираемая у него, вдвое больше теплоты, передаваемой другому резервуару, то температура второго резервуара равна 136,58 К. Если же температура второго резервуара равна 0 К, то ему вообще не будет передана теплота, поскольку вся энергия газа была преобразована в механическую энергию на участке адиабатического расширения в цикле. Эта температура называется абсолютным нулем . Термодинамическая температура, используемая обычно в научных исследованиях, совпадает с температурой, входящей в уравнение состояния идеального газа PV = RT , где P – давление, V – объем и R – газовая постоянная. Уравнение показывает, что для идеального газа произведение объема на давление пропорционально температуре. Ни для одного из реальных газов этот закон точно не выполняется. Но если вносить поправки на вириальные силы, то расширение газов позволяет воспроизводить термодинамическую шкалу температуры.

Международная температурная шкала.

В соответствии с изложенным выше определением температуру можно с весьма высокой точностью (примерно до 0,003 К вблизи тройной точки) измерять методом газовой термометрии. В теплоизолированную камеру помещают платиновый термометр сопротивления и резервуар с газом. При нагревании камеры увеличивается электросопротивление термометра и повышается давление газа в резервуаре (в соответствии с уравнением состояния), а при охлаждении наблюдается обратная картина. Измеряя одновременно сопротивление и давление, можно проградуировать термометр по давлению газа, которое пропорционально температуре. Затем термометр помещают в термостат, в котором жидкая вода может поддерживаться в равновесии со своими твердой и паровой фазами. Измерив его электросопротивление при этой температуре, получают термодинамическую шкалу, поскольку температуре тройной точки приписывается значение, равное 273,16 К.

Существуют две международные температурные шкалы – Кельвина (К) и Цельсия (С). Температура по шкале Цельсия получается из температуры по шкале Кельвина вычитанием из последней 273,15 К.

Точные измерения температуры методом газовой термометрии требуют много труда и времени. Поэтому в 1968 была введена Международная практическая температурная шкала (МПТШ). Пользуясь этой шкалой, термометры разных типов можно градуировать в лаборатории. Данная шкала была установлена при помощи платинового термометра сопротивления, термопары и радиационного пирометра, используемых в температурных интервалах между некоторыми парами постоянных опорных точек (температурных реперов). МПТШ должна была с наибольшей возможной точностью соответствовать термодинамической шкале, но, как выяснилось позднее, ее отклонения весьма существенны.

Температурная шкала Фаренгейта.

Температурную шкалу Фаренгейта, которая широко применяется в сочетании с британской технической системой единиц, а также в измерениях ненаучного характера во многих странах, принято определять по двум постоянным опорным точкам – температуре таяния льда (32° F) и кипения воды (212° F) при нормальном (атмосферном) давлении. Поэтому, чтобы получить температуру по шкале Цельсия из температуры по шкале Фаренгейта, нужно вычесть из последней 32 и умножить результат на 5/9.

Единицы теплоты.

Поскольку теплота есть одна из форм энергии, ее можно измерять в джоулях, и эта метрическая единица была принята международным соглашением. Но поскольку некогда количество теплоты определяли по изменению температуры некоторого количества воды, получила широкое распространение единица, называемая калорией и равная количеству теплоты, необходимому для того, чтобы повысить температуру одного грамма воды на 1° С. В связи с тем что теплоемкость воды зависит от температуры, пришлось уточнять величину калории. Появились по крайней мере две разные калории – «термохимическая» (4,1840 Дж) и «паровая» (4,1868 Дж). «Калория», которой пользуются в диететике, на самом деле есть килокалория (1000 калорий). Калория не является единицей системы СИ, и в большинстве областей науки и техники она вышла из употребления.

Электричество и магнетизм.

Все общепринятые электрические и магнитные единицы измерения основаны на метрической системе. В согласии с современными определениями электрических и магнитных единиц все они являются производными единицами, выводимыми по определенным физическим формулам из метрических единиц длины, массы и времени. Поскольку же большинство электрических и магнитных величин не так-то просто измерять, пользуясь упомянутыми эталонами, было сочтено, что удобнее установить путем соответствующих экспериментов производные эталоны для некоторых из указанных величин, а другие измерять, пользуясь такими эталонами.

Единицы системы СИ.

Ниже дается перечень электрических и магнитных единиц системы СИ.

Ампер, единица силы электрического тока, – одна из шести основных единиц системы СИ. Ампер – сила неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины с ничтожно малой площадью кругового поперечного сечения, расположенным в вакууме на расстоянии 1 м один от другого, вызывал бы на каждом участке проводника длиной 1 м силу взаимодействия, равную 2Ч 10 - 7 Н.

Вольт, единица разности потенциалов и электродвижущей силы. Вольт – электрическое напряжение на участке электрической цепи с постоянным током силой 1 А при затрачиваемой мощности 1 Вт.

Кулон, единица количества электричества (электрического заряда). Кулон – количество электричества, проходящее через поперечное сечение проводника при постоянном токе силой 1 А за время 1 с.

Фарада, единица электрической емкости. Фарада – емкость конденсатора, на обкладках которого при заряде 1 Кл возникает электрическое напряжение 1 В.

Генри, единица индуктивности. Генри равен индуктивности контура, в котором возникает ЭДС самоиндукции в 1 В при равномерном изменении силы тока в этом контуре на 1 А за 1 с.

Вебер, единица магнитного потока. Вебер – магнитный поток, при убывании которого до нуля в сцепленном с ним контуре, имеющем сопротивление 1 Ом, протекает электрический заряд, равный 1 Кл.

Тесла, единица магнитной индукции. Тесла – магнитная индукция однородного магнитного поля, в котором магнитный поток через плоскую площадку площадью 1 м 2 , перпендикулярную линиям индукции, равен 1 Вб.

Практические эталоны.

Свет и освещенность.

Единицы силы света и освещенности нельзя определить на основе только механических единиц. Можно выразить поток энергии в световой волне в Вт/м 2 , а интенсивность световой волны – в В/м, как в случае радиоволн. Но восприятие освещенности есть психофизическое явление, в котором существенна не только интенсивность источника света, но и чувствительность человеческого глаза к спектральному распределению этой интенсивности.

Международным соглашением за единицу силы света принята кандела (ранее называвшаяся свечой), равная силе света в данном направлении источника, испускающего монохроматическое излучение частоты 540Ч 10 12 Гц (l = 555 нм), энергетическая сила светового излучения которого в этом направлении составляет 1/683 Вт/ср. Это примерно соответствует силе света спермацетовой свечи, которая когда-то служила эталоном.

Если сила света источника равна одной канделе во всех направлениях, то полный световой поток равен 4 p люменов. Таким образом, если этот источник находится в центре сферы радиусом 1 м, то освещенность внутренней поверхности сферы равна одному люмену на квадратный метр, т.е. одному люксу.

Рентгеновское и гамма-излучение, радиоактивность.

Рентген (Р) – это устаревшая единица экспозиционной дозы рентгеновского, гамма- и фотонного излучений, равная количеству излучения, которое с учетом вторичноэлектронного излучения образует в 0,001 293 г воздуха ионы, несущие заряд, равный одной единице заряда СГС каждого знака. В системе СИ единицей поглощенной дозы излучения является грэй, равный 1 Дж/кг. Эталоном поглощенной дозы излучения служит установка с ионизационными камерами, которые измеряют ионизацию, производимую излучением.


Похожие статьи

© 2024 rsrub.ru. О современных технологиях кровли. Строительный портал.