Специальные разделы курса. Химическое строение моносахаридов Циклическая формула галактозы

а) Проекционные формулы Фишера

Для более быстрого и удобного написания конфигурации моноз Э. Фишер предложил изображать их проекционными формулами. Углеродная цепь изображается вертикальной ли­нией, на концах которой пишут первую и последнюю функци­ональные группы (альдегидную группу всегда пишут вверху). Группы Н и ОН пишут справа или слева от цепи, в соответст­вии с их пространственным расположением в молекуле. На­пример, глюкоза, по Фишеру, пишется так:

б) «Перспек­тивными» формулы (формулы Хеуорса)

Представленные выше формулы не способны дать всесторонние гео­метрические представления о полуацетальной структуре монозы. В 1928 г. Хеуорс предложил «перспек­тивными» формулы, более близко отражающие реальные структуры веществ.

Атом кислорода всегда располагают в правом верхнем углу. Для более отчетливого изображения плоскости кольца часть его, обращенная к читателю, обозначается утолщенными линиями. Углеродные атомы, входящие в цикл, как правило, не пишутся, а только нумеруются. Через них проводят верти­кальные линии, на концах которых пишут водородные атомы и гидроксильные группы в соответствии с их пространствен­ным расположением в молекуле:

При написании формулы любого моносахарида по Хеуорсу сле­дует придерживаться следующих правил:

1) все группы, расположен­ные справа от углеродного остова в обычных формулах (формулах Фишера), в формулах Хеуорса занимают положение под плоскостью кольца; а группы слева - над плоскостью кольца, за исключением атома водорода, при С 4 в фуранозах и С 5 в пиранозах;

2) концевую груп­пу - СН 2 ОН также помещают над плоскостью кольца.

Для циклических форм кетоз также при­меняют формулы Хеуорса:

Проекционные формулы Хеуорса могут создать неправильное пред­ставление о пространственном строении молекул углеводов - будто пиранозные и фуранозные кольца являются плоскими, что в действи­тельности не так. На самом деле пиранозное кольцо может принимать две конфигурации - форму кресла и форму лодки:

С энергетической точки зрения форма кресла более устойчива; именно она преобладает в большей части природных моносахаридов.

Однако широкое распространение получили проекции Хеуорса; они проще и лучше отображают химические свойства моносахаридов.

2.4 Отдельные представители моносахаридов

Наиболее широко распространены в природе гексозы и пентозы.

Среди пентоз набольшую роль играют: арабиноза, ксилоза, рибоза и дезоксирибоза. Пентозы встречаются в природных условиях главным образом как составные части молекул полисахаридов, называемых пентозанами, а также растительных камедей.

L-арабиноза

В природе преимущественно встречается L(+)-арабиноза. Она содержится в виде моносахарида в вишневом клее, свекле. L-арабиноза широко распространена в растениях в качестве составной части слизей, гумми, пектиновых веществ и гемицеллюлоз. Арабинозу получают путем гидролиза вишневого клея или свекольного жома. При восстановлении арабинозы получают многоатомный спирт арабит, при окислении – арабоновую кислоту.

Оптическая изомерия

Моносахариды являются оптически активными веществами. Они содержат асимметрические атомы углерода. У глюкозы их четыре, у фруктозы – три. В результате этого у моносахаридов имеется большое число стереоизомеров. Количество стереоизомеров глюкозы, имеющей четыре асимметрических атомов углерода, рассчитывается по формуле: N=2n, N = 24 = 16 cтереоизомеров. Из этого количества одна половина оптически деятельных стереоизомеров является антиподами другой половины. Таким образом, 16 стереоизомеров альдогексоз образуют 8 пар антиподов. Например, природному моносахариду Д-глюкозе соответствует антипод L-глюкоза (синтетически полученный).

Представить себе пространственное строение оптических изомеров альдоз удобнее всего, если выводить их из глицеринового альдегида. Он существует в виде двух оптических изомеров (антиподов).

Пространственные конфигурации моносахаридов D- и L-ряды.

Для более быстрого и удобного написания открытых форм моносахаридов Э. Фишер предложил изображать их проекционными формулами. Углеродная цепь изображается вертикальной линией, на концах которой пишут первую и последнюю функциональные группы (альдегидную группу пишут всегда вверху). Группы Н и ОН пишут справа и слева от цепи, в соответствии с их пространственным расположением в молекуле.

Циклические формы моносахаридов

Давно были известны свойства моносахаридов, которые были не связаны со свойствами оксиальдегидов и оксикетонов, например:

– наблюдалась повышенная реакционная способность одной из гидроксильных групп;

– наличие в два раза больше изомеров, чем предсказывает формула Фишера

– наблюдалось явление мутаротации – изменения угла вращения свежеприготовленных растворов и др.

В результате исследований было установлено, что в кристаллическом состоянии моносахариды имеют циклическое строение. В растворах моносахаридов наряду с альдегидными или кетонными формами всегда содержатся циклические полуацетальные формы (оксиформы), причем содержание открытой оксо-формы мало (доли процента).

Циклические формы моносахаридов возникают в результате взаимодействия альдегидной (кетонной) группы с гидроксильной группой у пятого или у четвертого углеродного атома — кислород ОН-группы присоединяется к атому углерода карбонильной группы, а водород ОН-группы присоединяется к атому кислорода карбонильной группы.

Образуются устойчивые циклические полуацетальные формы — пиранозная (шестичленный цикл) либо фуранозная (пятичленный цикл). Эти формы получили название от соответствующих гетероциклических соединений, шестичленные — от пирана (точнее тетрагидропирана), а пятичленные — от фурана (точнее тетрагидрофурана). Гидроксил, образованный на месте бывшей карбонильной группы, называется полуацетальным или гликозидным и отличается по свойствам от спиртовых гидроксилов.

Для указания размера кольца в циклической форме моносахарида две последние буквы названия моносахарида (“оза”) заменяют окончанием “фураноза” в случае пятичленного кольца или “пираноза”- в случае шестичленного кольца, например, глюкопираноза, фруктофураноза, рибофураноза и т.д.

В циклической форме монозы нет альдегидной или кетонной группы, имеются только гидроксильные группы. Эти гидроксилы разные: один гидроксил полуацетальный появился в результате внутримолекулярного взаимодействия карбонильной и спиртовой групп, для сахаров этот гидроксил называют еще гликозидным; остальные гидроксилы спиртовые.

Для более удобного написания и наименования полуацетальных форм моноз Хеуорс предложил рассматривать их как производные гидрированных гетероциклов пирана и фурана:

Моносахариды, имеющие пятичленное кольцо, как у фурана, называют фуранозами. Имеющие шестичленное кольцо относят к производным пирана и называют пиранозами. Перед названием типа цикла пишут начальный слог наименования сахара, например α-D(+)-глюкопираноза, β-L(-)-рибофураноза и т. д.

Шестиугольники (пираны) и пятиугольники (фураны), изображенные в перспективе — цикл лежит в горизонтальной плоскости, связи, расположенные ближе к наблюдателю, изображаются более жирными линиями. Атом кислорода располагается в шестичленном (пиранозном) цикле в правом верхнем углу, в пятичленном (фуранозном) – за плоскостью цикла, углеродные атомы, входящие в цикл, не пишутся, а только нумеруются от кислорода по часовой стрелке. Через атомы углерода проводят вертикальные линии, на концах которых пишут водородные атомы и ОН-группы.

Рассмотрим взаимоотношения проекционных формул Фишера и перспективных формул Хеуорса. Все группы (Н и ОН), расположенные справа в формуле Фишера, пишут под плоскостью цикла, а расположенные слева — над плоскостью цикла, концевая СН2-ОН группа располагается сверху от плоскости молекулы, если моносахарид относится к Д-ряду, и снизу от плоскости, если он относится к L-ряду.

Таким образом, в формулах Хеуорса полуацетальный гидроксил и концевая СН2-ОН группа располагаются у a-аномеров по разные стороны кольца, а у b-аномеров — по одну сторону (кружком обведены полуацетальные гидроксилы).

Аналогично можно осуществить переход от формул Фишера к формулам Хеуорса на примере одного из аномеров фуранозной формы Д-фруктозы:

Цикло-цепные таутомеры моносахаридов

Предыдущая123456789Следующая

По мере изучения свойств моносахаридов выяснилось, что открытые (цепные) формулы не описывают полностью химическое поведение сахаров.

Например, несмотря на наличие в молекуле глюкозы пяти ОН– групп, только одна из них вступает в реакцию со спиртами в присутствии сухого хлористого водорода с образованием гликозидов. Для объяснения подобных противоречий было высказано предположение (1870 г. А. Колли; 1883 г. Б. Толленс), что истинное строение моноз не описывается лишь открытой (цепной) формулой.

Моносахариды образуют в водном растворе таутомерные смеси открытых и циклических форм. В основе их образования лежит внутримолекулярная реакция нуклеофильного присоединения спиртовых групп к альдегидной или кетонной группе:

H+ полуацетальный,

HOR или гликозидный

Гидроксил

полуацеталь

Такой реакции способствует клешневидноя конформация углеродной цепи углевода:

В 1925–30 гг.

У. Хеуорс экспериментально определил размер возможных циклических таутомеров. Он предложил называть пятичленные циклы углеводов фуранозами, а шестичленные – пиранозами как производные фурана и пирана , соответственно:

фуран пиран

Изобразите цикло-цепные таутомеры D-рибозы по Фишеру и Хеуорсу .

Пиранозные формы рибозы образуются путем взаимодействия гидроксильной группы при С5 рибозы с альдегидной группой:

B,D–рибопираноза D–рибоза a,D–рибопираноза

Образование циклической полуацетальной формы приводит к появлению нового хирального центра у первого атома углерода, в результате при такой циклизации получаются два диастереомера, которые отличаются конфигурацией только С1 атома и называются a — и b-аномерами .

В a- форме полуацетальный (гликозидный) гидроксил справа от углеродной цепи молекулы; он расположен с той же стороны, что и гидроксил, определяющий принадлежность углевода к D-ряду.

В b-форме эта группа с противоположной стороны, слева.

Аналогично, только с участием гидроксила при атоме С4, происходит образование фуранозных форм D-рибозы:

a,D–рибопираноза D–рибоза a,D–рибофураноза

(циклическая форма) (открытая форма) (циклическая форма)

Исключение составляют заместители у того углеродного атома, при котором происходит циклизация.

У такого атома углерода необходимо делать циклическую перестановку заместителей (см.

ХОУОРСА ФОРМУЛЫ

рисунок).

a,D –рибопираноза (по Хеуорсу) a, D–рибофураноза (по Хеуорсу)

Цикло-цепная таутомерия моносахаридов – это существование в водном растворе смеси таутомерных форм, способных превращаться друг в друга через открытую таутомерную форму:

a,D-рибопираноза a,D-рибофураноза

b,D-рибопираноза b,D-рибофураноза

Мутаротация сахаров

При растворении кристаллической таутомерной формы углевода в воде наблюдается явление мутаротации.

Мутаротация объясняется тем, что кристаллический циклический таутомер, растворяясь в воде, переходит постепенно через открытую форму во все другие таутомерные формы.При этом угол вращения плоскости поляризованного света будет меняться во времени до достижения равновесия между всеми цикло-цепными таутомерами.

Это изменение во времени угла вращения плоскости поляризованного света в свежеприготовленных растворах сахаров называется мутаротацией.

Конформации моносахаридов

Углеводы в циклической форме существуют в виде неплоских конформаций. Так, для пиранозных форм наиболее энергетически выгодной является конформация «кресла».

В конформации a,D-рибопиранозы таких групп две – в первом и третьем

положениях:

a, D- рибопираноза

Эта форма менее стабильна; ее содержание составляет всего 18 %.

Пятичленные циклы и ациклическая форма содержатся в смеси в меньшей

концентрации.

Эпимеризация

D-фруктоза

Стереоизомеры, отличающиеся конфигурацией одного хирального центра, называются эпимерами, а процесс их взаимного превращения друг в друга в щелочной среде – эпимеризацией.

Предыдущая123456789Следующая

Циклические формы моносахаридов.

Моносахариды открытой формы могут образовывать циклы , т.е.

замыкаться в кольца.

Рассмотрим это на примере глюкозы .

Напомним, что глюкоза является шестиатомным альдегидоспиртом (гексозой).

В её молекуле одновременно присутствует альдегидная группа и несколькогидроксильных групп ОН (ОН — это функциональная группа спиртов).

При взаимодействии между собой альдегидной и одной из гидроксильных групп , принадлежащих одной и той же молекуле глюкозы , посленяя образует цикл , кольцо.

Атом водорода из гидроксильной группы пятого атома углерода переходит в альдегидную группу и соединяется там с кислородом.

Перспективные формулы Хеуорса

Вновь образованная гидроксильная группа (ОН ) называется гликозидной .

По своим свойствам она значительно отличается от спиртовых (гликозных)гидроксильных групп моносахаридов.

Атом кислорода из гидроксильной группы пятого атома углерода соединяется с углеродом альдегидной группы, в результате чего образуется кольцо:

Альфа- и бета-аномеры глюкозы различаются положением гликозидной группы ОН относительно углеродной цепи молекулы.

Мы рассмотрели возникновение шестичленного цикла.

Но циклы, также могут бытьпятичленными .

Это произойдёт в том случае, если углерод из альдегидной группы соединиться с кислородом гидроксильной группы при четвёртом атоме углерода , а не при пятом, как рассматривалось выше. Получится кольцо меньшего размера.

Шетичленные циклы называются пиранозными , пятичленные – фуранозными .

Названия циклов происходят от названий родственных гетероциклических соединений –фурана и пирана .

В названиях циклических форм наряду с названием самого моносахарида указывается «окончание» – пираноза или фураноза , характеризующие размер цикла.

Например: альфа-D-глюкофураноза, бета-D-глюкопираноза и т.д.

Циклические формы моносахаридов термодинамически более устойчивы в сравнении с открытыми формами, поэтому в природе они получили большее распространение.

Глюкоза

Глюкоза (от др.-греч.

γλυκύς — сладкий) (C6H12O6 ) или виноградный сахар –важнейший из моносахаридов ; белые кристаллы сладкого вкуса, легко растворяется в воде.

Глюкозное звено входит в состав ряда дисахаридов (мальтозы, сахарозы и лактозы) иполисахаридов (целлюлоза, крахмал).

Глюкоза содержится в соке винограда, во многих фруктах, а также в крови животных и человека.

Мышечная работа совершается, главным образом, за счёт энергии, выделяющейся при окислении глюкозы .

Глюкоза является шестиатомным альдегидоспиртом:

Глюкоза получается при гидролизе полисахаридов (крахмала и целюлозы ) под действием ферментов и минеральных кислот.

В природе глюкоза образуется растениями в процессе фотосинтеза .

Фруктоза

Фруктоза или плодовый сахар С6Н12О6 моносахарид , спутник глюкозы во многих плодовых и ягодных соках.

Фруктроза в качестве моносахаридного звена входит в состав сахарозы и лактулозы.

Фруктоза значительно слаще глюкозы.

Смеси с ней входят в состав мёда.

По строению фруктоза представляет собой шестиатомный кетоноспирт:

В отличие от глюкозы и других альдоз, фруктоза неустойчива как в щелочных, так и кислых растворах; разлагается в условиях кислотного гидролиза полисахаридов или гликозидов.

Галактоза

Галактоза моносахарид , один из наиболее часто встречающихся в природе шестиатомных спиртов - гексоз.

Галактоза cуществует в ациклической и циклической формах.

Отличается от глюкозы пространственным расположением групп у 4-го атома углерода.

Галактоза хорошо растворима в воде, плохо в спирте.

В тканях растений галактоза входит в состав рафинозы, мелибиозы, стахиозы, а также в полисахариды - галактаны, пектиновые вещества, сапонины, различные камеди и слизи, гуммиарабик и др.

В организме животных и человека галактоза - составная часть лактозы (молочного сахара), галактогена, группоспецифических полисахаридов, цереброзидов и мукопротеидов.

Галактоза входит во многие бактериальные полисахариды и может сбраживаться так называемыми лактозными дрожжами.

В животных и растительных тканях галактоза легко превращается в глюкозу , которая лучше усваивается, может превращаться в аскорбиновую и галактуроновую кислоты.

Олигосахариды. Сахароза.

Олигосахариды – это один из видов полисахаридов .

Олигосахариды представляют собой углеводы, состоящие из нескольких моносахаридных остатков (от греч.

ὀλίγος - немногий).

Как правило, их молекулы содержат от 2 до 10 моносахаридных остатков и имеют относительно небольшую молекулярную массу.

Наиболее распространёнными из олигосахаридов являются дисахариды итрисахариды .

Дисахариды

Молекулы дисахаридов состоят из двух остатков моносахаридов .

Общая формула дисахаридов, как правило, C12H22O11.

Похожая информация:

Поиск на сайте:

Моносахариды: рибоза, дезоксирибоза, глюкоза, фруктоза. Понятие о пространственных изомерах углеводов. Циклические формы моносахаридов

Лекция Углеводы

Этим названием обозначаются широко распространенные в природе вещества. Они возникают в растительных организмах в результате сложной химической реакции, в которой участвуют вода, углекислый газ из воздуха и солнечная энергия, причем реакция происходит с участием зерен хлорофилла, находящегося в зеленой части растений.

Итак, углеводы (сахара) - одна из наиболее важных и распро-страненных групп природных органических соединений.

Общая формула CmH2nOn(m и n ³3).

В растительном организме до 80% (сухого веса), а в животных организмах - до 2% (сухого веса) составляют углеводы.

В организме животных и человека углеводы (сахара) поступа-ют с различными пищевыми продуктами растительного проис-хождения, т.к. сахара не могут синтезироваться в организмах животного происхождения.

В растениях же углеводы образуются в процессе фотосинтеза из воды и углекислого газа (см.

Углеводы имеют разное строение, их можно разделить на две группы: простые и сложные углеводы.

Простыми углеводами (моносахаридами) называются такие соединения, которые не могут гидролизоваться с образованием более простых углеводов.

Сложными углеводами (полисахаридами) называют такие со-единения, которые могут гидролизоваться с образованием про-стых углеводов.

Моносахариды: рибоза, дезоксирибоза, глюкоза, фруктоза.

Понятие о пространственных изомерах углеводов.

Справочник химика 21

Циклические формы моносахаридов

В молекулах моносахаридов может содержаться от трех до девяти атомов углерода. Названия всех групп моносахаридов, а также названия отдельных представителей оканчиваются на -оза. В зависимости от числа атомов углерода в молекуле моноса-хариды делятся на тетрозы, пентозы, гексозы и т.д. Наибольшее значение имеют гексозы и пентозы.

Рибоза и дезоксирибоза

В природе часто встречаются пентозы.

Из них большой инте-рес представляют рибоза и дезоксирибоза, т.к. они входят в состав нуклеиновых кислот.

Название «дезоксирибоза» показывает, что по сравнению с рибозой в ее молекуле на одну-ОН группу меньше.

Молекулы рибозы и дезоксирибозы могут иметь как линей-ное, так и циклическое строение:

Важнейшими представителями гексоз являются глюкоза и фруктоза, на примере которых рассмотрим строение, номенкла-туру, изомерию и свойства моносахаридов.

Строение

Глюкоза и фруктоза являются изомерами и имеют молеку-лярную формулу С6Н12О6.

Строение моносахаридов было установлено с помощью реакций:

1) Восстановления глюкозы йодистым водородом, в результате этой реакции образуется 2-иодгексан.

2) Глюкоза вступает в реакцию с аммиачным раствором оксида серебра, что говорит о наличии в молекуле глюкозы альдегид-ной группы:

(С5Н11О5)СОН+2OH®(C5H11O5)COONH4+2Ag¯+3NH3+H2O

3) Глюкоза окисляется бромной водой в глюконовую кислоту:

(С5Н11О6)СОН+Br2+Н2O®(С5Н11O5)СООН+2HBr

4) При взаимодействии глюкозы с гидроксидом меди происходит окрашивание раствора в синий цвет - это качественная реак-ция для многоатомных спиртов.

Количественные эксперимен-ты показали, что в молекуле глюкозы 5 гидроксильных групп. Таким образом, глюкоза - это пятиатомный альдегидоспирт.

5) В молекуле фруктозы также установлено наличие 5 спиртовых групп, но при энергичном окислении фруктоза образует две оксикислоты с двумя и четырьмя атомами углерода. Такое поведение характерно для кетонов.

Таким образом, фрукто-за - многоатомный кетоноспирт:

Следовательно, моносахариды - это многоатомные альдегидо- или кетоноспирты.

Однако ряд экспериментальных фактов не находит объясне-ния в рамках такого строения моносахаридов: 1) моносахариды не дают некоторые реакции, характерные для альдегидов; в частности, они не образуют бисульфитных соеди-нений при взаимодействии с NaHSO3;

2) при измерении оптической активности свежеприготовленных растворов глюкозы оказалось, что она с течением времени па-дает;

3) при нагревании моносахаридов с метиловым спиртом в присут-ствии HСl выпадает кристаллический осадок гликозида, кото-рый легко гидролизуется с образованием одной молекулы спирта.

Все эти факты нашли объяснение, когда предположили, что каждый моносахарид может существовать в виде несколь-ких таутомерных форм.

В растворе, кроме развернутых цепей, существуют и циклические формы, которые образуются при внутримолекулярном взаимодействии альдегидной группы и гидроксильной группы при пятом атоме углерода:

Наличие циклической формы объясняет все вышеприведен-ные аномалии следующим образом:

1) в растворах преобладают циклические формы моносахаридов, открытые формы находятся в небольших количествах;

2) изменение оптической активности связано с установлением равновесия между открытой и циклической формами.

Образование гликозидов объясняется наличием гликозидного, или полуацетального гидроксила, который отличается большей ре-акционной способностью, чем остальные гидроксиды.

Поэтому он легко взаимодействует со спиртами с образованием гликозидов. Хеуорс предложил изображать циклические формы Сахаров так, чтобы отчетливо были видны и кольцо, и заместители:

Циклические формы моносахаридов могут содержать пять или шесть атомов в цикле.

Сахара с шестичленным циклом назы-ваются пиранозами, например, глюкоза - глюкопираноза; цик-лические формы Сахаров с пятичленным циклом называются фуранозами. Глюкоза с пятичленным циклом - глюкофураноза, а фруктоза с пятичленным циклом - фруктофураноза.

Номенклатура и изомерия моносахаридов Названия моносахаридов содержат греческие названия числа

атомов и окончание -оза (см. выше).

Наличие альдегидной и кетонной группы обозначается прибавлением слов альдоза, кетоза.

Глюкоза - альдогексоза, фруктоза - кетогексоза.

Изомерия обусловлена наличием:

1) альдегидной или кетонной группы;

2) асимметричного атома углерода;

3) таутомерии (т.е. равновесия между разными формами молекулы).

Получение моносахаридов

1) В природе глюкоза и фруктоза (наряду с другими моносахари-дами) образуются в результате реакции фотосинтеза:

Исходя из этого можно сделать вывод, что ряд моносахаридов встречается в природе в свободном виде, например фруктоза и глюкоза содержатся в фруктах, фруктоза - в меде и т.д.

2) Гидролиз полисахаридов.

Например, на производстве глюкозу чаще всего получают гидролизом крахмала в присутствии сер-ной кислоты:

3) Неполное окисление многоатомных спиртов.

4) Синтез из формальдегида в присутствии гидроксида кальция (предложен А.

М. Бутлеровым в 1861 г.):

Физические свойства

Моносахариды представляют собой твердые вещества, спо-собные кристаллизоваться, гигроскопичны, хорошо растворимы в воде. Водные растворы их имеют нейтральную реакцию на лак-мус, большинство - сладкие на вкус.

В спирте растворяются плохо, в эфире нерастворимы.

Глюкоза - бесцветное кристаллическое вещество, сладкое на вкус, хорошо растворимо в воде. Из водного раствора ее выделяют в виде кристаллогидрата С6Н12О6 Н2О.

Химические свойства

Химические свойства моносахаридов обусловлены наличием в их молекулах различных функциональных групп.

Окисление моносахаридов:

(С5Н11O6)СОН+2OH®(C6H11O5)COONH4+2Ag¯+3NH3+H2O

2. Реакция спиртовых гидроксидов:

а) взаимодействие с гидроксидом меди (II) с образованием алкоголята меди (II);

б) образование простых эфиров;

в) образование сложных эфиров при взаимодействии с карбоновыми кислотами - реакция этерификации.

Например, вза-имодействие глюкозы с уксусной кислотой или ее хлорангидридом:

3. Образование гликозидов (см. выше).

4. Брожение.

Брожение - это сложный процесс, при котором происходит расщепление моносахаридов под влиянием раз-личных микроорганизмов. Различают брожение:

а) спиртовое:

Химические свойства глюкозы показаны также в табл.

Применение глюкозы

Глюкоза - ценный питательный продукт. В организме она подвергается сложному биохимическому превращению, при этом высвобождается энергия, которая накапливается в процессе фо-тосинтеза, который протекает ступенчато, и поэтому энергия вы-деляется медленно (см. рис. 51).

Большое значение имеют процессы брожения глюкозы.

На-пример, при квашении капусты, огурцов, скисании молока про-исходит молочнокислое брожение глюкозы, так же как при сило-совании кормов. Широко используется на практике спиртовое брожение глюкозы, например, при производстве пива.

Фруктоза

Фруктоза имеет такую же, как и глюкоза, молекулярную формулу (С6Н12О6), но является не полиоксиальдегидом, а полиоксикетоном.

Молекула фруктозы содержит три асимметричес-ких атома углерода, причем конфигурация у них такая же, как и у соответствующих атомов в молекуле глюкозы. Итак, фрукто-за - изомер и «близкий родственник» глюкозы. Она хорошо рас-творима в воде, имеет сладкий вкус (примерно в 3 раза слаще глюкозы).

Фруктоза также наиболее часто встречается в циклических формах (a- или b-), но, в отличие от глюкозы, в пятичленных.

В водных растворах фруктозы имеет место равновесие:

Фруктоза и глюкоза в больших количествах содержатся в сладких фруктах, пчелином меде.

ПОСМОТРЕТЬ ЕЩЕ:

Α-D-Фруктофураноза

$L(.8)CH2OH|_(x-.7,y1,W+)<`|HO>_(x-1.2)<|OH>_(x-.7,y-1,W-)<_(y-1.4)CH2OH>_(x1.3,y-.7)O_#2|OH

`-<`/wHO>_p<`-dHO>_p:a_pO_p_(A54,d+)-OH;HO_(A60,w-)#a_(A-60)-OH

$L(.8)_(x-.8,y1,W+)_(x-1.4)_(x-.8,y-1,W-)_(x1.5,y-.6)O_#1;$itemColor1(red)OH`/|#1|$itemColor1(red)OH;H$itemColor1(red)O|#2|H;H|#3|$itemColor1(red)OH;H$itemColor1(red)O\|#4|H

CH2OH_(y1.2)C|C<`-HO><-H>|C<`-H><-OH>|C<`-H><_(x2)»»_(y#-1;2)O_(y#2)»»_#2>|CH2OH

Брутто-формула: C6H12O6

Молекулярная масса: 180.156

Химический состав

Синонимы

  • a-D-Фруктофураноза
  • alpha-D-Фруктофураноза
  • α-D-Фруктофураноза
  • альфа-D-Фруктофураноза
  • альфа-Д-Фруктофураноза
  • (2S,3S,4S,5R)-2,5-bis(hydroxymethyl)oxolane-2,3,4-triol(IUPAC)
  • CPD-10723
  • SureCN240001
  • a-D-fructofuranose
  • alpha-D-fructofuranose
  • α-D-fructofuranose

Входит в группы

Моносахариды

Урок 34. Циклические формы моносахаридов

томский государственный университет
кафедра органической химии

D-D- (- :

Haworth) .

присоединением молекулы любого спирта или, вообще говоря, в результате взаимодействия с любым спиртовым гидроксилом, в том числе и другим аномерным гидроксилом.

Типичными гликозидами такого рода являются дисахариды.
Циклические формы галактозы и маннозы:

Правила перехода от линейных форм к циклическим заключаются в том, что группировки, стоящие в линейных формах справа, в циклических формах изображаются под кольцом, а те, что слева- над кольцом:

ДИСАХАРИДЫ
ПОЛИСАХАРИДЫ

Известно, что альдегиды и кетоны реагируют со спиртами, образуя полуацетали и кетали. Циклические полуацетали образуются особенно легко. Для этого необходимыми условиями являются: 1) гидроксил и карбонильная группа должны быть частями одной молекулы; 2) при их взаимодействии может образоваться пяти- или шестичленное кольцо.
Например, 4-гидроксипентаналь образует пятичленный циклический полуацеталь. При этом создается новый стереоцентр при углероде С-1 (все четыре заместителя при С-1 разные):

Подобным образом 5-гидроксигексаналь формирует шестичленный циклический полуацеталь, в котором также генерируется новый стереоцентр при С-1:

Гидроксильная и карбонильная группы содержатся в одной молекуле моносахаридов, поэтому моносахариды существуют почти исключительно в форме циклических полуацеталей.
Циклические проекции Фишера. Размер полуацетального кольца моносахарида сравнивают с гетероциклическими молекулами – пираном и фураном:

Шестичленные полуацетальные кольца обозначают словом «пиран», а пятичленные – «фуран».
При кристаллизации из этанола D-глюкоза дает -D-глюкопиранозу, t пл = 146 °С, удельное оптическое вращение D = +112,2°. Кристаллизация из водного этанола дает -D-глюкопиранозу, t пл = 150 °С, D = +18,7°. Эти - и -изомеры – шестичленные циклические полуацетали – образуются при реакции гидроксила ОН при углероде С-5 с карбонильной группой в положении 1. Новый стереоцентр, возникающий при получении полуацеталя, называют аномерным углеродом . Образующиеся таким образом диастереомеры имеют специальное название – аномеры . Конфигурация аномерного углерода обозначается приставкой , когда его гидроксильная группа находится с той же стороны фишеровской проекции, что и ОН-группа при стереоцентре с высшим номером. При противоположной ориентации этих гидроксилов конфигурация аномерного углерода – .

По данным метода ЯМР 13 С D-глюкозы в водном растворе, существуют: -пираноза (38,8%),
-пираноза (60,9%), -фураноза (0,14%), -фураноза (0,15%), гидрат открытой линейной формы (0,0045%).
Приводим - и -формы глюкофуранозы в сравнении с циклическими формами фруктозы –
-фруктофуранозы и -фруктофуранозы.

В альдозах замыкание цикла возможно за счет 1-го (альдегидного) углерода и гидроксила при 4-м (или 5-м) атоме С, а в кетозах – за счет 2-го (карбонильного) углерода и гидроксила в 5-м или 6-м положении цепи.

Формулы Хеуорса. Альтернативный способ изображения циклических структур моносахаридов известен как проекции Хеуорса и назван так в честь английского химика Уолтера Хеуорса (нобелевский лауреат, 1937 г.). В формулах Хеуорса пяти- и шестичленные циклические полуацетали представляют в виде плоских пяти- или шестиугольников, расположенных как бы перпендикулярно плоскости листа бумаги. Группы, присоединенные к углеродам кольца, располагают над или под плоскостью кольца и параллельно плоскости листа бумаги. В формулах Хеуорса аномерный углерод обычно записывают справа, а полуацетальный кислород – сзади него. Проекции Хеуорса - и -пиранозных форм D-глюкозы показаны ниже.

УПРАЖНЕНИЯ.

1. Что означает понятие «циклические формы углеводов»?

2. Приведите структурные и проекционные формулы Фишера для: а) триозы; б) тетрозы;
в) пентозы.

3. Как по химическим формулам различить L- и D-изомеры (на примере эритрозы)?

4. Укажите ацетальные связи и асимметрические атомы углерода (стереоцентры) в соединениях:

5. Напишите структурные формулы гетероциклов пирана и фурана, указывая каждый атом.

6. Составьте схемы образования циклических полуацетальных форм из:
а) D-треозы; б) D-рибозы (фуранозная и пиранозная формы).

7. Преобразуйте графические формулы соединений а)–в) в фишеровские проекции и сделайте отнесение этих проекций к D- или L-глицеральдегиду:

8. Сколько возможно кетотетроз? Для каждой нарисуйте проекции Фишера.

9. Составьте формулы Хеуорса:

1) -D-глюкопиранозы; 2) -D-глюкофуранозы.

Ответы на упражнения к теме 2

Урок 34

1. Циклические формы углеводов содержат цикл с кислородом в кольце. Обычно это циклический полуацеталь. В его молекуле нет свободной альдегидной группы, зато имеется ацетальная связь. Например, для эритрозы:

3. Чтобы по химическим формулам различить D- и L-изомеры эритрозы, следует представить их в виде проекций Фишера. Ориентация гидроксила вправо при высшем стереоцентре С*-3 означает
D-изомер. Направление группы НО влево от С*-3 свойственно L-изомеру:

4. Ацетальные связи отмечены стрелкой (), а стереоцентры – звездочкой (*):

в) две последовательные перестановки заместителей не изменяют конфигурацию (D или L) при стереоцентре:

8. Возможны две энантиомерные кетотетрозы, для которых проекции Фишера следующие:

9. Формулы Хеуорса:

Диастереомеры – стереоизомеры, молекулы которых не являются зеркальным отображением друг друга.

Образование циклических форм связано со способностью углеродной цепи принимать выгодную клешневидную конформацию и с дальнейшим взаимодействием внутри одной молекулы карбонильной группы с гидроксильной группой. Это взаимодействие приводит к образованию циклического полуацеталя. Устойчивыми являются 5- и 6-членные циклы. Для их изображения приняты формулы Хеуорса.

5-членный цикл (фуранозный)

6-членный цикл (пиранозный)

Для альдоз образование фуранозного цикла происходит при взаимодействии карбонильного звена С 1 с гидроксигруппой С 4 , а пиранозный цикл образуется между С 1 и С 5 .

Для кетоз , т.е. фруктозы, в образовании цикла участвует карбонильное звено С 2 и гидроксигруппа С 5 , что приводит к образованию фуранозы, или гидроксильной группы С 6 , что приводит к образованию пиранозы.

Нумерацию цепи в формулах Хеуорса ведут от крайнего правого положения по часовой стрелке. Последнее звено -СН 2 ОН выносят под плоскость цикла, что является дополнительным D-признаком по Хеуорсу.

Представим клешневидную конформацию молекулы D-рибозы.


В бывшем карбонильном звене в результате внутримолекулярного взаимодействия возникает дополнительный центр хиральности, за счет образования полуацетального гидроксила, который может располагаться над или под плоскостью цикла. Его положение определяет вид аномера моносахарида. Если полуацетальный гидроксил расположен под плоскостью цикла, то мы имеем a-аномер . Если полуацетальный гидроксил расположен над плоскостью цикла – b-аномер .

a-аномер b-аномер

Таким образом, в растворе моносахариды присутствуют в открытых и циклических формах, способных свободно переходить друг в друга. Такой вид изомерии называется цикло-оксо-таутомерией , а изомеры, взаимно переходящие друг в друга и находящиеся в состоянии динамического равновесия, называются таутомерами .


Химические свойства моносахаридов

Исходя из функционального состава, моносахариды проявляют свойства многоатомных спиртов, карбонильных соединений, полуацеталей и специфические свойства.

1) Свойства многоатомных спиртов проявляются в качественной реакции взаимодействия моносахаридов со свежеосажденным гидроксидом меди (II) - Сu(OH) 2. В результате происходит образование растворимого хелатного комплекса ярко-синего цвета. В реакцию вступает a-диольный фрагмент молекулы моносахарида.


2) Свойства альдегидов проявляются в качественной реакции взаимодействия альдегидной группы с мягкими окислителями (Сu(OH) 2 или Ag 2 O) при повышенной температуре. Данная реакция в биохимическом анализе для глюкозы называется пробой Троммера и используется для обнаружения глюкозы в моче.


3) Свойства спиртов проявляются в реакции этерификации ОН-группы под действием кислородсодержащих кислот. Биологическое значение имеют эфиры фосфорной кислоты – фосфаты, образующиеся обычно по месту последнего звена с участием фермента фосфорилазы.

В клетке содержится в виде дианиона. Аналогично образуются сульфаты моносахаридов, входящие в состав полисахаридов соединительной ткани.

4) Моносахариды способны восстанавливаться водородом на никеле или палладии. Продуктами восстановления являются многоатомные спиры - альдиты: глюкоза-сорбит, манноза-маннит, ксилоза-ксилит, галактоза-дульцит.


5) Свойства полуацеталей проявляются во взаимодействии циклических форм моносахаридов со спиртами, при этом полуацетальный или гликозидный гидроксил не проявляют свойств спиртов, а ведут себя специфически, образуя гликозиды.


К специфическим свойствам относятся различные виды окисления моносахаридов, реакции изомеризации и брожения.

а) Спиртовое брожение

C 6 H 12 O 6 → 2C 2 H 5 OH + 2CO 2

б) Молочно-кислое брожение


Производные моносахаридов. Аминосахара. Сахарные кислоты

Углеводы входят в состав клеток и тканей всех растительных и животных организмов. Они имеют большое значение как источники энергии в метаболических процессах.

Углеводы служат основным ингредиентом пищи млекопитающих. Общеизвестный их представитель - глюкоза - содержится в расти- тельных соках, плодах, фруктах и особенно в винограде (отсюда ее название - виноградный сахар). Она является обязательным компонентом крови и тканей животных и непосредственным источником энергии для клеточных реакций.

Углеводы образуются в растениях в процессе фотосинтеза из диоксида углерода и воды. Для человека основным источником угле- водов является растительная пища.

Углеводы делятся на моносахариды и полисахариды. Моносахариды не гидролизуются с образованием более простых углеводов. Способные к гидролизу полисахариды можно рассматривать как продукты поли- конденсации моносахаридов. Полисахариды являются высокомолекулярными соединениями, макромолекулы которых содержат сотни и тысячи моносахаридных остатков. Промежуточную группу между моно- и полисахаридами составляют олигосахариды (от греч. oligos - немного), имеющие относительно небольшую молекулярную массу.

Составная часть приведенных выше названий - сахариды - связана с употребляющимся до сих пор общим названием углеводов - сахара.

11.1. Моносахариды

11.1.1. Строение и стереоизомерия

Моносахариды, как правило, представляют собой твердые вещества, хорошо растворимые в воде, плохо - в спирте и нерастворимые в большинстве органических растворителей. Почти все моносахариды обладают сладким вкусом.

Моносахариды могут существовать как в открытой (оксоформе), так и в циклических формах. В растворе эти изомерные формы находятся в динамическом равновесии.

Открытые формы. Моносахариды (монозы) являются гетерофункциональными соединениями. В их молекулах одновременно содержатся карбонильная (альдегидная или кетонная) и несколько гидроксильных групп, т. е. моносахариды представляют собой полигидроксикарбонильные соединения - полигидроксиальдегиды и полигидроксикетоны. Они имеют неразветвленную углеродную цепь.

Моносахариды классифицируют с учетом природы карбонильной группы и длины углеродной цепи. Моносахариды, содержащие аль- дегидную группу, называют альдозами, а кетонную группу (обычно в положении 2) - кетозами (суффикс -оза применяют для названий моносахаридов: глюкоза, галактоза, фруктоза и т. д.). В общем виде строение альдоз и кетоз можно представить следующим образом.

В зависимости от длины углеродной цепи (3-10 атомов) моносахариды делят на триозы, тетрозы, пентозы, гексозы, гептозы и т. д. Наиболее распространены пентозы и гексозы.

Стереоизомерия. Молекулы моносахаридов содержат несколько центров хиральности, что служит причиной существования многих стереоизомеров, отвечающих одной и той же структурной формуле. Например, в альдогексозе имеются четыре асимметрических атома углерода и ей соответствуют 16 стереоизомеров (2 4), т. е. 8 пар энантиомеров. По сравнению с соответствующими альдозами кетогексозы содержат на один хиральный атом углерода меньше, поэтому число стереоизомеров (2 3) уменьшается до 8 (4 пары энантиомеров).

Открытые (нециклические) формы моносахаридов изображают в виде проекционных формул Фишера (см. 7.1.2). Углеродную цепь в них записывают вертикально. У альдоз наверху помещают альдегидную группу, у кетоз - соседнюю с карбонильной первичную спиртовую группу. С этих групп начинают нумерацию цепи.

Для обозначения стереохимии используется D,L-система. Отнесение моносахарида к D- или L-ряду проводят по конфигурации хирального центра, наиболее удаленного от оксогруппы, независимо от конфигурации остальных центров! Для пентоз таким «определяющим» центром является атом С-4, а для гексоз - С-5. Положение группы ОН у последнего центра хиральности справа свидетельствует о принадлежности моносахарида к D-ряду, слева - к L-ряду, т. е. по аналогии со стереохимическим стандартом - глицериновым альдегидом (см. 7.1.2).

Известно, что для обозначения стереохимического строения соединений с несколькими центрами хиральности универсальной является R,S-система (см. 7.1.2). Однако громоздкость получаемых при этом названий моносахаридов ограничивает ее практическое применение.

Большинство природных моносахаридов принадлежит к D-ряду. Из альдопентоз часто встречаются D-рибоза и D-ксилоза, а из кетопентоз - D-рибулоза и D-ксилулоза.

Общие названия кетоз образуются введением суффикса -ул в названия соответствующих альдоз: рибозе соответствует рибулоза, ксилозе - ксилулоза (из этого правила выпадает название «фруктоза», которое не имеет связи с названием соответствующей альдозы).

Как видно из приведенных выше формул, стереоизомерные d-альдогексозы, равно как d-альдопентозы и d-кетопентозы, явля- ются диастереомерами. Среди них есть такие, которые отличаются конфигурацией только одного центра хиральности. Диастереомеры, различающиеся конфигурацией только одного асимметрического атома углерода, называются эпимерами. Эпимеры - частный случай диастереомеров. Например, d-глюкоза и d-галактоза отличаются друг

от друга только конфигурацией атома С-4, т. е. являются эпимерами по С-4. Аналогично d-глюкоза и d-манноза - эпимеры по С-2, а d-рибоза и d-ксилоза - по С-3.

Каждой альдозе d-ряда соответствует энантиомер l-ряда с противоположной конфигурацией всех центров хиральности.

Циклические формы. Открытые формы моносахаридов удобны для рассмотрения пространственных отношений между стереоизомерными моносахаридами. В действительности моносахариды по строению являются циклическими полуацеталями. Образование циклических форм моносахаридов можно представить как результат внутримолекулярного взаимодействия карбонильной и гидроксильной групп (см. 9.2.2), содержащихся в молекуле моносахарида.

Полуацетальную гидроксильную группу в химии углеводов называют гликозидной. По свойствам она значительно отличается от остальных (спиртовых) гидроксильных групп.

В результате циклизации образуются тер- модинамически более устойчивые фуранозные (пятичленные) и пиранозные (шестичленные) циклы. Названия циклов происходят от названий родственных гетероциклических соединений - фурана и пирана.

Образование этих циклов связано со способностью углеродных цепей моносахаридов принимать достаточно выгодную клешневидную конформацию (см. 7.2.1). Вследствие этого в пространстве оказы- ваются сближенными альдегидная (или кетонная) и гидроксильная при С-4 (или при С-5) группы, т. е. те функциональные группы, в результате взаимодействия которых осуществляется внутримолекулярная циклизация. Если у альдогексоз в реакцию вступит гидроксильная группа при С-5, то возникает полуацеталь с шестичленным пиранозным циклом. Аналогичный цикл у кетогексоз получается при участии в реакции гидроксильной группы при С-6.

В названиях циклических форм наряду с названием моносахарида указывают размер цикла словами пираноза или фураноза. Если в циклизации у альдогексоз участвует гидроксильная группа при С-4, а у кетогексоз - при С-5, то получаются полуацетали с пятичленным фуранозным циклом.

В циклической форме создается дополнительный центр хиральности - атом углерода, ранее входивший в состав карбонильной группы (у альдоз это С-1). Этот атом называют аномерным, а два соот- ветствующих стереоизомера - α- и β-аномерами (рис. 11.1). Аномеры представляют собой частный случай эпимеров.

Различные конфигурации аномерного атома углерода возникают вследствие того, что альдегидная группа из-за поворота вокруг σ-связи С-1-С-2 атакуется нуклеофильным атомом кислорода фак- тически с разных сторон (см. рис. 11.1). В результате образуются полуацетали с противоположными конфигурациями аномерного центра.

У α-аномера конфигурация аномерного центра одинакова с конфигурацией «концевого» хирального центра, определяющего принадлежность к d- или l -ряду, а у β-аномера - противоположна. В проекционных формулах Фишера у моносахаридов d -ряда в α-аномере гликозидная группа ОН находится справа, а в β-аномере - слева от углеродной цепи.

Рис. 11.1. Образование α- и β-аномеров на примере d -глюкозы

Формулы Хеуорса. Циклические формы моносахаридов изображают в виде перспективных формул Хеуорса, в которых циклы показывают в виде плоских многоугольников, лежащих перпендикулярно плоскости рисунка. Атом кислорода располагают в пиранозном цикле в дальнем правом углу, в фуранозном - за плоскостью цикла. Символы атомов углерода в циклах не указывают.

Для перехода к формулам Хеуорса циклическую формулу Фишера преобразуют так, чтобы атом кислорода цикла располагался на одной прямой с атомами углерода, входящими в цикл. Это показано ниже на примере a-d-глюкопиранозы путем двух перестановок у атома С-5, что не изменяет конфигурацию этого асимметрического центра (см. 7.1.2). Если преобразованную формулу Фишера расположить горизонтально, как требуют правила написания формул Хеуорса, то заместители, находившиеся справа от вертикальной линии углеродной цепи, окажутся под плоскостью цикла, а те, что были слева, - над этой плоскостью.

У d-альдогексоз в пиранозной форме (и у d-альдопентоз в фуранозной форме) группа СН 2 ОН всегда располагается над плоскостью цикла, что служит формальным признаком d-ряда. Гликозидная гид- роксильная группа у a-аномеров d-альдоз оказывается под плоскостью цикла, у β-аномеров - над плоскостью.

С целью упрощения в формулах Хеуорса часто не изображают символы атомов водорода и их связи с атомами углерода цикла. Если речь идет о смеси аномеров или стереоизомере с неизвестной конфигурацией аномерного центра, то положение гликозидной группы ОН обозначают волнистой линией.

d -ГЛЮКОПИРАНОЗА

По аналогичным правилам осуществляется переход и у кетоз, что показано ниже на примере одного из аномеров фуранозной формы d-фруктозы.

11.1.2. Цикло-оксо-таутомерия

В твердом состоянии моносахариды находятся в циклической форме. В зависимости от того, из какого растворителя была перекристаллизована d-глюкоза, она получается либо в виде a-d-глюкопиранозы (из спирта или воды), либо в виде β-d-глюкопиранозы (из пиридина). Они различаются величиной угла удельного вращения [a] D 20 , а именно +112? у a-аномера и +19? у β-аномера. У свежеприготовленного раствора

каждого аномера при стоянии наблюдается изменение удельного вращения до достижения постоянного, одинакового для того и другого раствора угла вращения +52,5?.

Изменение во времени угла вращения плоскости поляризации света растворами углеводов называют мутаротацией.

Химическая сущность мутаротации состоит в способности моносахаридов к существованию в виде равновесной смеси таутомеров - открытой и циклических форм. Такой вид таутомерии называется цикло-оксо-таутомерией.

В растворах равновесие между четырьмя циклическими таутомерами моносахаридов устанавливается через открытую форму - оксоформу. Взаимопревращение a- и β-аномеров друг в друга через про- межуточную оксоформу называется аномеризацией.

Таким образом, в растворе d-глюкоза существует в виде таутомеров: оксоформы и a- и β-аномеров пиранозных и фуранозных циклических форм.

В смеси таутомеров преобладают пиранозные формы. Оксоформа, а также таутомеры с фуранозными циклами содержатся в малых количествах. Важно, однако, не абсолютное содержание того или иного таутомера, а возможность их перехода друг в друга, что приводит к пополнению количества «нужной» формы по мере ее расходова-

ния в каком-либо процессе. Например, несмотря на незначительное содержание оксоформы, глюкоза вступает в реакции, характерные для альдегидной группы.

Аналогичные таутомерные превращения происходят в растворах со всеми моносахаридами и большинством известных олигосахаридов. Ниже приведена схема таутомерных превращений важнейшего представителя кетогексоз - d-фруктозы, содержащейся во фруктах, меде, а также входящей в состав сахарозы (см. 11.2.2).

11.1.3. Конформации

Наглядные формулы Хеуорса тем не менее не отражают реальной геометрии молекул моносахаридов, поскольку пяти- и шестичлен- ные циклы не являются плоскими. Так, шестичленный пиранозный цикл, подобно циклогексану, принимает наиболее выгодную конформацию кресла (см. 7.2.2). В распространенных моносахаридах объемная первичноспиртовая группа СН 2 ОН и большинство гидроксильных групп находятся в более выгодных экваториальных положениях.

Из двух аномеров d-глюкопиранозы в растворе преобладает β-аномер, у которого все заместители, включая полуацетальный гидроксил, расположены экваториально.

Высокой термодинамической устойчивостью d-глюкопирано- зы, обусловленной ее конформационным строением, объясняется наибольшее распространение d-глюкозы в природе среди моносахаридов.

Конформационное строение моносахаридов предопределяет пространственное расположение полисахаридных цепей, формируя их вторичную структуру.

11.1.4. Неклассические моносахариды

Неклассическими моносахаридами называют ряд соединений, имеющих общую структурную «архитектуру» с обычными, «класси- ческими» моносахаридами (альдозами и кетозами), но отличающихся либо видоизменением одной или нескольких функциональных групп, либо отсутствием некоторых из них. В таких соединениях часто отсутствует группа ОН. Их называют путем добавления к названию исходного моносахарида приставки дезокси- (означает отсутствие группы ОН) и названия «нового» заместителя.

Дезоксисахара. Самый распространенный из дезоксисахаров - 2-дезокси-D-рибоза - является структурным компонентом ДНК. В природных сердечных гликозидах (см. 15.3.5), применяемых в кардиологии, содержатся остатки дидезоксисахаров, например дигитоксозы (сердечные гликозиды наперстянки).

Аминосахара. Эти производные, содержащие вместо гидроксильной группы аминогруппу (обычно при С-2), обладают основными свойствами и образуют с кислотами кристаллические соли. Важнейшими представителями аминосахаров служат аналоги d-глю- козы и d-галактозы, для которых часто используют полутривиаль-

ные названия - d-глюкозамин и d-галактозамин соответственно. Аминогруппа в них может быть ацилирована остатками уксусной, иногда серной кислоты.

Альдиты. К альдитам, называемым также сахарными спиртами, относят многоатомные спирты, содержащие гидроксильную группу вместо оксогруппы =О. Каждой альдозе соответствует один альдит, в названии которого используют суффикс -ит вместо -озя, например d-маннит (от d-маннозы). Альдиты обладают более симметричной структурой, чем альдозы, поэтому среди них встречаются мезосоединения (внутренне симметричные), например ксилит.

Кислые сахара. Моносахариды, в которых вместо звена СН 2 ОН содержится группа СООН, имеют общее название уроновые кислоты. В их названиях используют сочетание -уроновяя кислотя вместо суффикса -озя соответствующей альдозы. Заметим, что нумерация цепи ведется от альдегидного атома углерода, а не от карбоксильного, чтобы сохранить структурное родство с исходным моносахаридом.

Уроновые кислоты являются компонентами растительных и бактериальных полисахаридов (см. 13.3.2).

КИСЛЫЕ САХАРА

Моносахариды, содержащие карбоксильную группу вместо альдегидной, относят к альдоновым кислотам. Если карбоксильные группы присутствуют на обоих концах углеродной цепи, то такие соединения имеют общее название альдаровые кислоты. В номенклатуре этих типов кислот применяют соответственно сочетания -оновяя кислотя и - яровяя кислотя.

Альдоновые и альдаровые кислоты не могут образовывать таутомерных циклических форм, так как лишены альдегидной группы. Альдаровые кислоты, как и альдиты, могут существовать в виде мезо-соединений (пример - галактаровая кислота).

Аскорбиновая кислота (витамин С). Этот, пожалуй, старейший и самый популярный витамин по структуре близок к моносахаридам и представляет собой γ-лактон кислоты (I). Аскорбиновая кислота

содержится во фруктах, особенно в цитрусовых, ягодах (шиповник, черная смородина), овощах, молоке. В больших масштабах произ- водится в промышленности из d-глюкозы.

Аскорбиновая кислота проявляет довольно сильные кислотные свойства (рК а 4,2) за счет одной из гидроксильных групп ендиольного фрагмента. При образовании солей γ-лактонное кольцо не размыкается.

Аскорбиновая кислота обладает сильными восстановительными свойствами. Образующаяся при ее окислении дегидроаскорбиновая кислота легко восстанавливается в аскорбиновую. Этот процесс обеспечивает ряд окислительно-восстановительных реакции в организме.

11.1.5. Химические свойства

Моносахариды - вещества с богатой реакционной способностью. В их молекулах имеются следующие наиболее важные реакционные центры:

Полуацетальный гидроксил (выделен цветом);

Спиртовые гидроксильные группы (все остальные, кроме полуацетальной);

Карбонильная группа ациклической формы.

Гликозиды. К гликозидам относят производные циклических форм углеводов, в которых полуацетальная гидроксильная группа заменена группой OR. Неуглеводный компонент гликозида называют агликоном. Связь между аномерным центром (в альдозах это С-1, в кетозах - С-2) и группой OR называют гликозидной. Гликозиды являются ацеталями циклических форм альдоз или кетоз.

В зависимости от размера оксидного цикла гликозиды подразделяют на пиранозиды и фуранозиды. Гликозиды глюкозы называют глюкозидами, рибозы - рибозидами и т. п. В полном названии гликозидов последовательно указывают наименование радикала R, конфигурацию аномерного центра (α- или β-) и название углеводного остатка с заме- ной суффикса -оза на -озид (см. примеры в схеме реакции ниже).

Гликозиды образуются при взаимодействии моносахаридов со спиртами в условиях кислотного катализа; при этом в реакцию вступает только полуацетальная группа ОН.

Растворы гликозидов не мутаротируют.

Превращение моносахарида в гликозид - сложный процесс, протекающий через ряд последовательных реакций. В общих чертах он ана-

логичен получению ациклических ацеталей (см. 5.3). Однако вследствие обратимости реакции в растворе в равновесии могут находиться таутомерные формы исходного моносахарида и четыре изомерных гликозида (α- и β-аномеры фуранозидов и пиранозидов).

Как и все ацетали, гликозиды гидролизуются разбавленными кислотами, но проявляют устойчивость к гидролизу в слабощелочной среде. Гидролиз гликозидов приводит к соответствующим спиртам и моносахаридам и представляет собой реакцию, обратную их образованию. Ферментативный гидролиз гликозидов лежит в основе расщепления полисахаридов, осуществляемого в животных организмах.

Сложные эфиры. Моносахариды легко ацилируются ангидридами органических кислот, образуя сложные эфиры с участием всех гидроксильных групп. Например, при взаимодействии с уксусным ангидридом получаются ацетильные производные моносахаридов. Сложные эфиры моносахаридов гидролизуются как в кислой, так и в щелочной средах.

Большое значение имеют эфиры неорганических кислот, в частности эфиры фосфорной кислоты - фосфаты. Они содержатся во всех растительных и животных организмах и представляют собой метаболически активные формы моносахаридов. Наиболее важную роль играют фосфаты d-глюкозы и d-фруктозы.

Эфиры серной кислоты - сульфаты - входят в состав полисахаридов соединительной ткани (см. 11.3.2).

Восстановление. При восстановлении моносахаридов (их альдегидной или кетонной группы) образуются альдиты.

Шестиатомные спирты - D -глюцит (сорбит) и D -маннит - получаются при восстановлении соответственно глюкозы и маннозы. Альдиты легко растворимы в воде, обладают сладким вкусом, некоторые из них (ксилит и сорбит) используются как заменители сахара для больных сахарным диабетом.

При восстановлении альдоз получается лишь один полиол, при восстановлении кетоз - смесь двух полиолов; например, из d -фруктозы образуются d -глюцит и d -маннит.

Окисление. Реакции окисления используют для обнаружения моносахаридов, в частности глюкозы, в биологических жидкостях (моча, кровь).

В молекуле моносахарида окислению может подвергаться любой атом углерода, но легче всего окисляется альдегидная группа альдоз в открытой форме.

Мягкими окислителями (бромная вода) можно окислить альдегидную группу в карбоксильную, не затрагивая других групп. При

этом образуются альдоновые кислоты. Так, при окислении d -глюкозы бромной водой получается d -глюконовая кислота. В медицине используется ее кальциевая соль - глюконат кальция.

Действие более сильных окислителей, таких, как азотная кислота, перманганат калия, и даже ионов Cu 2 + или Ag+ приводит к глубокому распаду моносахаридов с разрывом углерод-углеродных связей. Углеродная цепь сохраняется только в отдельных случаях, например при окислении d -глюкозы в d -глюкаровую кислоту или d -галактозы в галактаровую (слизевую) кислоту.

Получающаяся галактаровая кислота трудно растворима в воде и выпадает в осадок, что используется для обнаружения галактозы указанным методом.

Альдозы легко окисляются комплексными соединениями меди(11) и серебра - соответственно реактивами Фелинга и Толленса (см. также 5.5). Такие реакции возможны в связи с присутствием альдегидной (открытой) формы в таутомерной смеси.

Благодаря способности восстанавливать ионы Cu 2 + или Ag+ моносахариды и их производные, содержащие потенциальную альдегидную группу, называют восстанавливающими.

Гликозиды не проявляют восстановительной способности и не дают положительной пробы с этими реактивами. Однако кетозы способны восстанавливать катионы металлов, так как в щелочной среде они изомеризуются в альдозы.

Прямое окисление звена СН 2 ОН моносахаридов в карбоксильную группу невозможно из-за присутствия более склонной к окислению альдегидной группы, поэтому для превращения моносахарида в уроновую кислоту окислению подвергают моносахарид с защищенной альдегидной группой, например, в виде гликозида.

Образование гликозидов глюкуроновой кислоты - глюкуронидов - является примером биосинтетического процесса конъюгации, т. е. процесса связывания лекарственных средств или их метаболитов с биогенными веществами, а также с токсичными веществами с последующим выведением из организма с мочой.

11.2. Олигосахариды

Олигосахариды - углеводы, построенные из нескольких остатков моносахаридов (от 2 до 10), связанных между собой гликозидной связью.

Простейшими олигосахаридами являются дисахариды (биозы), которые состоят из остатков двух моносахаридов и представляют собой гликозиды (полные ацетали), в которых один из остатков выполняет роль агликона. С ацетальной природой связана способность дисахаридов гидролизоваться в кислой среде с образованием моносахаридов.

Существуют два типа связывания моносахаридных остатков:

За счет полуацетальной группы ОН одного моносахарида и любой спиртовой группы другого (в примере ниже - гидроксил при С-4); это группа восстанавливающих дисахаридов;

С участием полуацетальных групп ОН обоих моносахаридов; это группа невосстанавливающих дисахаридов.

11.2.1. Восстанавливающие дисахариды

В этих дисахаридах один из моносахаридных остатков участвует в образовании гликозидной связи за счет гидроксильной группы (чаще всего при С-4). В дисахариде имеется свободная полуацетальная гидроксильная группа, вследствие чего сохраняется способность к раскрытию цикла.

Восстановительные свойства таких дисахаридов и мутаротация их растворов обусловлены цикло-оксо-таутомерией.

Представителями восстанавливающих дисахаридов являются мальтоза, целлобиоза, лактоза.

Мальтоза. Этот дисахарид называют еще солодовым сахаром (от лат. maltum - солод). Он является основным продуктом расщепления крахмала под действием фермента β-амилазы, выделяемого слюнной железой, а также содержащегося в солоде (проросших, а затем высушенных и измельченных зернах хлебных злаков). Мальтоза имеет менее сладкий вкус, чем сахароза.

Мальтоза - дисахарид, в котором остатки двух молекул d-глюко- пиранозы связаны а(1^4)-гликозидной связью.

Аномерный атом углерода, участвующий в образовании этой связи, имеет а-конфигурацию, а аномерный атом с полуацетальной гидроксильной группой может иметь как α-, так и β-конфигурацию (соответственно а- и β-мальтоза).

В систематическом названии дисахарида «первая» молекула приобретает суффикс -озил, а у «второй» сохраняется суффикс -оза. Кроме того, в полном названии указывают конфигурации обоих аномерных атомов углерода.

Целлобиоза. Этот дисахарид образуется при неполном гидролизе полисахарида целлюлозы.

Целлобиоза - дисахарид, в котором остатки двух молекул d-глю- копиранозы связаны β(1-4)-гликозидной связью.

Отличие целлобиозы от мальтозы состоит в том, что аномерный атом углерода, участвующий в образовании гликозидной связи, имеет β-конфигурацию.

Мальтоза расщепляется ферментом α-глюкозидазой, который не активен по отношению к целлобиозе. Целлобиоза способна расщепляться ферментом β-глюкозидазой, но этот фермент в человеческом организме отсутствует, поэтому целлобиоза и соответствующий полисахарид целлюлоза не могут перерабатываться в организме человека. Жвачные животные могут питаться целлюлозой (клетчаткой) трав, поскольку находящиеся в их желудочно-кишечном тракте бактерии обладают β-глюкозидазой.

Конфигурационное различие между мальтозой и целлобиозой влечет за собой и конформационное различие: α-гликозидная связь в мальтозе расположена аксиально, а β-гликозидная связь в целло- биозе - экваториально. Конформационное состояние дисахаридов служит первопричиной линейного строения целлюлозы, в состав которой входит целлобиоза, и клубкообразного строения амилозы (крахмал), построенной из мальтозных единиц.

Лактоза содержится в молоке (4-5%) и получается из молочной сыворотки после отделения творога (отсюда и ее название «молочный сахар»).

Лактоза - дисахарид, в котором остатки d-галактопиранозы и d-глюкопиранозы связаны Р(1-4)-гликозидной связью.

Участвующий в образовании этой связи аномерный атом углерода d-галактопиранозы имеет β-конфигурацию. Аномерный атом глюкопиранозного фрагмента может иметь как α-, так и β-конфигурацию (соответственно α- и β-лактоза).

11.2.2. Невосстанавливающие дисахариды

Важнейшим из невосстанавливающих дисахаридов является сахароза. Ее источником служат сахарный тростник, сахарная свекла (до 28% от сухого вещества), соки растений и плодов.

Сахароза - дисахарид, в котором остатки a-d-глюкопиранозы и β-d-фруктофуранозы связаны гликозидными связями за счет полуацетальных гидроксильных групп каждого моносахарида.


Поскольку в молекуле сахарозы отсутствуют полуацетальные гидроксильные группы, она неспособна к цикло-оксо-таутомерии. Растворы сахарозы не мутаротируют.

11.2.3. Химические свойства

По химической сути олигосахариды являются гликозидами, а восстанавливающие олигосахариды обладают еще и признаками моносахаридов, так как содержат потенциальную альдегидную группу (в открытой форме) и полуацетальный гидроксил. Этим и определяется их химическое поведение. Они вступают во многие реакции, свойственные моносахаридам: образуют сложные эфиры, способны окисляться и восстанавливаться под действием тех же реагентов.

Наиболее характерной реакцией дисахаридов является кислотный гидролиз, приводящий к расщеплению гликозидной связи с образованием моносахаридов (во всех таутомерных формах). В общих чертах эта реакция аналогична гидролизу алкилгликозидов (см. 11.1.5).

11.3. Полисахариды

Полисахариды составляют основную массу органической материи в биосфере Земли. Они выполняют три важные биологические функции, выступая в роли структурных компонентов клеток и тканей, энергетического резерва и защитных веществ.

Полисахариды (гликаны) - высокомолекулярные углеводы. По химической природе они являются полигликозидами (полиацеталями).

По принципу строения полисахариды не отличаются от восстанавливающих олигосахаридов (см. 11.2). Каждое звено моносахарида связано гликозидными связями с предыдущим и последующим зве- ньями. При этом для связи с последующим звеном предоставляется полуацетальная гидроксильная группа, а с предыдущим - спиртовая группа. Различие заключается лишь в количестве моносахаридных остатков: полисахариды могут содержать их сотни и даже тысячи.

В полисахаридах растительного происхождения наиболее часто встречаются (1-4)-гликозидные связи, а в полисахаридах животно- го и бактериального происхождения имеются связи и других типов. На одном конце полимерной цепи находится остаток восстанавливающего моносахарида. Поскольку его доля во всей макромолекуле очень мала, полисахариды практически не проявляют восстановительных свойств.

Гликозидная природа полисахаридов обусловливает их гидролиз в кислой и устойчивость в щелочной средах. Полный гидролиз приводит к образованию моносахаридов или их производных, неполный - к ряду промежуточных олигосахаридов, в том числе и дисахаридов.

Полисахариды имеют большую молекулярную массу. Им присущ типичный для высокомолекулярных веществ более высокий уровень структурной организации макромолекул. Наряду с первичной структурой, т. е. с определенной последовательностью мономерных остатков, важную роль играет вторичная структура, определяемая пространственным расположением макромолекулярной цепи.

Полисахаридные цепи могут быть разветвленными или неразветвленными (линейными).

Полисахариды делят на группы:

Гомополисахаридов, состоящих из остатков одного моносахарида;

Гетерополисахаридов, состоящих из остатков разных моносахаридов.

К гомополисахаридам относятся многие полисахариды растительного (крахмал, целлюлоза, пектиновые вещества), животного (гликоген, хитин) и бактериального (декстраны) происхождения.

Гетерополисахариды, к числу которых относятся многие животные и бактериальные полисахариды, изучены меньше, но играют важную биологическую роль. Гетерополисахариды в организме связаны с белками и образуют сложные надмолекулярные комплексы.

11.3.1. Гомополисахариды

Крахмал. Этот полисахарид состоит из полимеров двух типов, построенных из d-глюкопиранозы: амилозы (10-20%) и амилопектина (80-90%). Крахмал образуется в растениях в процессе фотосинтеза и «запасается» в клубнях, корнях, семенах.

Крахмал - белое аморфное вещество. В холодной воде нерастворим, в горячей набухает и некоторая часть его постепенно растворяется. При быстром нагревании крахмала из-за содержащейся в нем влаги (10-20%) происходит гидролитическое расщепление макромолекулярной цепи на более мелкие осколки и образуется смесь полисахаридов, называемых декстринами. Декстрины лучше растворяются в воде, чем крахмал.

Такой процесс расщепления крахмала, или декстринизация, осуществляется при хлебопечении. Крахмал муки, превращенный в де- кстрины, легче усваивается вследствие большей растворимости.

Амилоза - полисахарид, в котором остатки d-глюкопиранозы связаны а(1-4)-гликозидными связями, т. е. дисахаридным фрагмен- том амилозы является мальтоза.

Цепь амилозы неразветвленная, включает до тысячи глюкозных остатков, молекулярная масса до 160 тыс.

По данным рентгеноструктурного анализа, макромолекула амилозы свернута в спираль (рис. 11.2). На каждый виток спирали приходится шесть моносахаридных звеньев. Во внутренний канал спирали могут входить соответствующие по размеру молекулы, например молекулы иода, образуя комплексы, называемые соединениями включения. Комплекс амилозы с иодом имеет синий цвет. Это используется в аналитических целях для открытия как крахмала, так и иода (иодкрахмальная проба).

Рис. 11.2. Спиралевидная структура амилозы (вид вдоль оси спирали)

Амилопектин в отличие от амилозы имеет разветвленное строение (рис. 11.3). Его молекулярная масса достигает 1-6 млн.

Рис. 11.3. Разветвленная макромолекула амилопектина (цветные кружки - места ответвления боковых цепей)

Амилопектин - разветвленный полисахарид, в цепях которого остатки D-глюкопиранозы связаны а(1^4)-гликозидными связями, а в точках разветвления - а(1^6)-связями. Между точками разветвления располагаются 20-25 глюкозных остатков.

Гидролиз крахмала в желудочно-кишечном тракте происходит под действием ферментов, расщепляющих а(1-4)- и а(1-6)-гликозидные связи. Конечными продуктами гидролиза являются глюкоза и мальтоза.

Гликоген. В животных организмах этот полисахарид является структурным и функциональным аналогом растительного крахмала. По строению он подобен амилопектину, но имеет еще большее разветвление цепей. Обычно между точками разветвления содержатся 10-12, иногда даже 6 глюкозных звеньев. Условно можно сказать, что разветвленность макромолекулы гликогена вдвое больше, чем амилопектина. Сильное разветвление способствует выполнению гликогеном энергетической функции, так как только при множестве концевых остатков можно обеспечить быстрое отщепление нужного количества молекул глюкозы.

Молекулярная масса гликогена необычайно велика и достигает 100 млн. Такой размер макромолекул содействует выполнению функции резервного углевода. Так, макромолекула гликогена из-за большого размера не проходит через мембрану и остается внутри клетки, пока не возникнет потребность в энергии.

Гидролиз гликогена в кислой среде протекает очень легко с количественным выходом глюкозы. Это используют в анализе тканей на содержание гликогена по количеству образовавшейся глюкозы.

Аналогично гликогену в животных организмах такую же роль резервного полисахарида в растениях выполняет амилопектин, име- ющий менее разветвленное строение. Это связано с тем, что в растениях значительно медленнее протекают метаболические процессы и не требуется быстрого притока энергии, как иногда необходимо животному организму (стрессовые ситуации, физическое или умственное напряжение).

Целлюлоза. Этот полисахарид, называемый также клетчаткой, является наиболее распространенным растительным полисахаридом. Целлюлоза обладает большой механической прочностью и выполняет функцию опорного материала растений. Древесина содержит 50-70% целлюлозы; хлопок представляет собой почти чистую целлюлозу. Целлюлоза является важным сырьем для ряда отраслей промышленности (целлюлозно-бумажной, текстильной и т. п.).

Целлюлоза - линейный полисахарид, в котором остатки d-глюко- пиранозы связаны Р(1-4)-гликозидными связями. Дисахаридный фрагмент целлюлозы представляет собой целлобиозу.

Макромолекулярная цепь не имеет разветвлений, в ней содержится 2,5-12 тыс. глюкозных остатков, что соответствует молеку- лярной массе от 400 тыс. до 1-2 млн.

β-Конфигурация аномерного атома углерода приводит к тому, что макромолекула целлюллозы имеет строго линейное строение. Этому способствует образование водородных связей внутри цепи, а также между соседними цепями.

Такая упаковка цепей обеспечивает высокую механическую прочность, волокнистость, нерастворимость в воде и химическую инертность, что делает целлюлозу прекрасным материалом для построения клеточных стенок растений. Целлюлоза не расщепляется обычными ферментами желудочно-кишечного тракта, но необходима для нормального питания как балластное вещество.

Большое практическое значение имеют эфирные производные целлюлозы: ацетаты (искусственный шелк), нитраты (взрывчатые вещества, коллоксилин) и другие (вискозное волокно, целлофан).

11.3.2. Гетерополисахариды

Полисахариды соединительной ткани. Среди полисахаридов соединительной ткани наиболее полно изучены хондроитинсульфаты (кожа, хрящи, сухожилия), гиалуроновая кислота (стекловидное тело глаза, пуповина, хрящи, суставная жидкость), гепарин (печень). По структуре эти полисахариды имеют некоторые общие черты: их неразветвленные цепи состоят из дисахаридных остатков, в состав которых входят уроновая кислота (d-глюкуроновая, d-галактуроно- вая, l-идуроновая - эпимер d-глюкуроновой кислоты по С-5) и аминосахар (N-ацетилглюкозамин, N-ацетилгалактозамин). Некоторые из них содержат остатки серной кислоты.

Полисахариды соединительной ткани иногда называют кислыми мукополисахаридами (от лат. mucus - слизь), поскольку они содержат карбоксильные группы и сульфогруппы.

Хондроитинсульфаты. Они состоят из дисахаридных остатков N-ацетилированного хондрозина, соединенных β(1-4)-гликозидными связями.

N-Ацетилхондрозин построен из остатков D -глюкуроновой кислоты и N-ацетил -D -галактозамина, связанных β(1-3)-гликозидной связью.

Как свидетельствует название, эти полисахариды являются эфирами серной кислоты (сульфатами). Сульфатная группа образует эфирную связь с гидроксильной группой N-ацетил-D-галактозамина, находящейся в положении 4 или 6. Соответственно различают хон- дроитин-4-сульфат и хондроитин-6-сульфат. Молекулярная масса хондроитинсульфатов составляет 10-60 тыс.

Гиалуроновая кислота. Этот полисахарид построен из дисахаридных остатков, соединенных β(1-4)-гликозидными связями.

Дисахаридный фрагмент состоит из остатков D -глюкуроновой кислоты и N-ацетил-D-глюкозамина, связанных β (1-3)-гликозидной связью.

Гепарин. В гепарине в состав повторяющихся дисахаридных еди- ниц входят остатки d-глюкозамина и одной из уроновых кислот - d-глюкуроновой или l-идуроновой. В количественном отношении преобладает l-идуроновая кислота. Внутри дисахаридного фрагмента осуществляется α(1-4)-гликозидная связь, а между дисахаридными фрагментами - α(1-4)-связь, если фрагмент оканчивается l-идуро- новой кислотой, и β(1-4)-связь, если d-глюкуроновой кислотой.

Аминогруппа у большинства остатков глюкозамина сульфатирована, а у некоторых из них ацетилирована. Кроме того, сульфатные группы содержатся у ряда остатков l-идуроновой кислоты (в положе- нии 2), а также глюкозамина (в положении 6). Остатки d-глюкуроно- вой кислоты не сульфатированы. В среднем на один дисахаридный фрагмент приходятся 2,5-3 сульфатные группы. Молекулярная масса гепарина равна 16-20 тыс.

Гепарин препятствует свертыванию крови, т. е. проявляет антикоагулянтные свойства.

Многие гетерополисахариды, включая рассмотренные выше, содержатся не в свободном, а в связанном виде с полипептидными цепями. Такие высокомолекулярные соединения относят к смешан- ным биополимерам, для которых в настоящее время используется термин гликоконъюгаты.

Похожие статьи

© 2024 rsrub.ru. О современных технологиях кровли. Строительный портал.