Как сделать регулируемый блок питания своими руками. Как сделать ровный пол на регулируемых лагах своими руками Как сделать регулируемый

Мастер, описание устройства которого в первой части, задавшись целью сделать блок питания с регулировкой, не стал усложнять себе дело и просто использовал платы, которые лежали без дела. Второй вариант предполагает использование еще более распространенного материала – к обычному блоку была добавлена регулировка, пожалуй, это очень многообещающее по простоте решение при том, что нужные характеристики не будут потеряны и реализовать задумку можно своими руками даже не самому опытному радиолюбителю. В бонус еще два варианта совсем простых схем со всеми подробными объяснениями для начинающих. Итак, на ваш выбор 4 способа.

Расскажем, как сделать регулируемый блок питания из ненужной платы компьютера. Мастер взял плату компьютера и выпилил блок, питающий оперативку.
Так он выглядит.

Определимся, какие детали нужно взять, какие нет, чтобы отрезать то, что нужно, чтобы на плате были все компоненты блока питания. Обычно импульсный блок для подачи тока на компьютер состоит из микросхемы, шим контроллера, ключевых транзисторов, выходного дросселя и выходного конденсатора, входного конденсатора. На плате еще и зачем-то присутствует входной дроссель. Его тоже оставил. Ключевые транзисторы – может быть два, три. Есть посадочное место по 3 транзистор, но в схеме не используется.

Сама микросхема шим контроллера может выглядеть так. Вот она под лупой.

Может выглядеть как квадратик с маленькими выводами со всех сторон. Это типичный шим контроллер на плате ноутбука.


Так выглядит блок питания импульсный на видеокарте.

Точно также выглядит блок питания для процессора. Видим шим контроллер и несколько каналов питания процессора. 3 транзистора в данном случае. Дроссель и конденсатор. Это один канал.
Три транзистора, дроссель, конденсатор – второй канал. 3 канал. И еще два канала для других целей.
Вы знаете как выглядит шим-контроллер, смотрите под лупой его маркировку, ищите в интернете datasheet, скачиваете pdf файл и смотрите схему, чтобы ничего не напутать.
На схеме видим шим-контроллер, но по краям обозначены, пронумерованы выводы.

Обозначаются транзисторы. Это дроссель. Это конденсатор выходной и конденсатор входной. Входное напряжение в диапазоне от 1,5 до 19 вольт, но напряжение питание шим-контроллера должно быть от 5 вольт до 12 вольт. То есть может получиться, что потребуется отдельный источник питания для питания шим-контроллера. Вся обвязка, резисторы и конденсаторы, не пугайтесь. Это не нужно знать. Всё есть на плате, вы не собираете шим-контроллер, а используете готовый. Нужно знать только 2 резистора – они задают выходное напряжение.

Резисторный делитель. Вся его суть в том, чтобы сигнал с выхода уменьшить примерно до 1 вольта и подать на вход шим-контроллера фидбэк – обратная связь. Если вкратце, то изменяя номинал резисторов, можем регулировать выходное напряжение. В показанном случае вместо резистора фидбэк мастер поставил подстроечный резистор на 10 килоом. Этого оказалось достаточным, чтобы регулировать выходное напряжение от 1 вольта до примерно 12 вольт. К сожалению, не на всех шим-контроллерах это возможно. Например, на шим контроллерах процессоров и видеокарт, чтобы была возможность настраивать напряжение, возможность разгона, выходное напряжение сдается программно по несколькоканальной шине. Менять выходное напряжение такого шим контроллера можно разве только перемычками.

Итак, зная как выглядит шим-контроллер, элементы, которые нужны, уже можем выпиливать блок питания. Но делать это нужно аккуратно, так как вокруг шим-контроллера есть дорожки, которые могут понадобиться. Например, можно видеть – дорожка идёт от базы транзистора к шим контроллеру. Её сложно было сохранить, пришлось аккуратно выпиливать плату.

Используя тестер в режиме прозвонки и ориентируясь на схему, припаял провода. Также пользуясь тестером, нашел 6 вывод шим-контроллера и от него прозвонил резисторы обратной связи. Резистор находился рфб, его выпаял и вместо него от выхода припаял подстроечный резистор на 10 килоом, чтобы регулировать выходное напряжение, также путем про звонки выяснил, что питание шим-контроллера напрямую связано со входной линией питания. Это значит, что не получиться подавать на вход больше 12 вольт, чтобы не сжечь шим-контроллер.

Посмотрим, как блок питания выглядит в работе

Припаял штекер для входного напряжения, индикатор напряжения и выходные провода. Подключаем внешнее питание 12 вольт. Загорается индикатор. Уже был настроен на напряжение 9,2 вольта. Попробуем регулировать блок питания отверткой.


Пришло время заценить, на что способен блок питания. Взял деревянный брусок и самодельный проволочный резистор из нихромовой проволоки. Его сопротивление низкое и вместе с щупами тестера составляет 1,7 Ом. Включаем мультиметр в режим амперметра, подключаем его последовательно к резистору. Смотрите, что происходит – резистор накаляется до красна, напряжение на выходе практически не меняется, а ток составляет около 4 ампер.


Раньше мастер уже делал похожие блоки питания. Один вырезан своими руками из платы ноутбука.

Это так называемое дежурное напряжение. Два источника на 3,3 вольта и 5 вольт. Сделал ему на 3d принтере корпус. Также можете посмотреть статью, где делал похожий регулируемый блок питания, тоже вырезал из платы ноутбука (https://electro-repair.livejournal.com/3645.html). Это тоже шим контроллер питания оперативной памяти.

Как сделать регулирующий БП из обычного, от принтера

Пойдет речь о блоке питания принтера canon, струйный. Они много у кого остаются без дела. Это по сути отдельное устройство, в принтере держится на защелке.
Его характеристики: 24 вольта, 0,7 ампера.

Понадобился блок питания для самодельной дрели. Он как раз подходит по мощности. Но есть один нюанс – если его так подключить, на выходе получим всего лишь 7 вольт. Тройной выход, разъёмчик и получим всего лишь 7 вольт. Как получить 24 вольта?
Как получить 24 вольта, не разбирая блок?
Ну самый простой – замкнуть плюс со средним выходом и получим 24 вольта.
Попробуем сделать. Подключаем блок питания в сеть 220. Берем прибор и пытаемся измерить. Подсоединим и видим на выходе 7 вольт.
У него центральный разъем не задействован. Если возьмем и подсоединим к двум одновременно, напряжение видим 24 вольта. Это самый простой способ сделать так, чтобы данный блок питания не разбирая, выдавал 24 вольта.

Необходим самодельный регулятор, чтобы в некоторых пределах можно было регулировать напряжение. От 10 вольт до максимума. Это сделать легко. Что для этого нужно? Для начала вскрыть сам блок питания. Он обычно проклеен. Как вскрыть его, чтобы не повредить корпус. Не надо ничего колупать, поддевать. Берем деревяшку помассивнее либо есть киянка резиновая. Кладем на твердую поверхность и по шву лупим. Клей отходит. Потом по всем сторонам простучали хорошенько. Чудесным образом клей отходит и все раскрывается. Внутри видим блок питания.


Достанем плату. Такие бп легко переделать на нужное напряжение и можно сделать также регулируемый. С обратной стороны, если перевернем, есть регулируемый стабилитрон tl431. С другой стороны увидим средний контакт идет на базу транзистора q51.

Если подаем напряжение, то данный транзистор открывается и на резистивном делителе появляется 2,5 вольта, которые нужно для работы стабилитрона. И на выходе появляется 24 вольта. Это самый простой вариант. Как его завести можно еще – это выбросить транзистор q51 и поставить перемычку вместо резистора r 57 и всё. Когда будем включать, всегда на выходе непрерывно 24 вольта.

Как сделать регулировку?

Можно изменить напряжение, сделать с него 12 вольт. Но в частности мастеру, это не нужно. Нужно сделать регулируемый. Как сделать? Данный транзистор выбрасываем и вместо резистор 57 на 38 килоома поставим регулируемый. Есть старый советский на 3,3 килоома. Можно поставить от 4,7 до 10, что есть. От данного резистора зависить только минимальное напряжение, до которого он сможет опускать его. 3,3 -сильно низко и не нужно. Двигатели планируется поставить на 24 вольта. И как раз от 10 вольт до 24 – нормально. Кому нужно другое напряжение, можно большого сопротивления подстроечный резистор.
Приступим, будем выпаивать. Берём паяльник, фен. Выпаял транзистор и резистор.

Подпаял переменный резистор и попробуем включить. Подал 220 вольт, видим 7 вольт на нашем приборе и начинаем вращать переменный резистор. Напряжение поднялось до 24 вольт и плавно-плавно вращаем, оно падает – 17-15-14 то есть снижается до 7 вольт. В частности установлено на 3,3 ком. И наша переделка оказалась вполне успешной. То есть для целей от 7 до 24 вольт вполне приемлемая регулировка напряжения.


Такой вариант получился. Поставил переменный резистор. Ручку и получился регулируемый блок питания – вполне удобный.

Видео канала “Технарь”.

Такие блоки питания найти в Китае просто. Наткнулся на интересный магазин, который продает б/у блоки питания от разных принтеров, ноутбуков и нетбуков. Они разбирают и продают сами платы, полностью исправные на разные напряжения и токи. Самый большой плюс – это то, что они разбирают фирменную аппаратуру и все блоки питания качественные, с хорошими деталями, во всех есть фильтры.
Фотографии – разные блоки питания, стоят копейки, практически халява.

Простой блок с регулировкой

Простой вариант самодельного устройства для питания приборов с регулировкой. Схема популярная, она распространена в Интернете и показала свою эффективность. Но есть и ограничения, которые показаны на ролике вместе со всеми инструкциями по изготовлению регулированного блока питания.



Самодельный регулированный блок на одном транзисторе

Какой можно сделать самому самый простой регулированный блок питания? Это получится сделать на микросхеме lm317. Она уже сама с собой представляет почти блок питания. На ней можно изготовить как регулируемый по напряжению блок питания, так и потоку. В этом видео уроке показано устройство с регулировкой напряжения. Мастер нашёл несложную схему. Входное напряжение максимальное 40 вольт. Выходное от 1,2 до 37 вольта. Максимальный выходной ток 1,5 ампер.

Без теплоотвода, без радиатора максимальная мощность может быть всего 1 ватт. А с радиатором 10 ватт. Список радиодеталей.


Приступаем к сборке

Подключим на выход устройства электронную нагрузку. Посмотрим, насколько хорошо держит ток. Выставляем на минимум. 7,7 вольта, 30 миллиампер.

Всё регулируется. Выставим 3 вольта и добавим ток. На блоке питания выставим ограничения только побольше. Переводим тумблер в верхнее положение. Сейчас 0,5 ампера. Микросхема начал разогреваться. Без теплоотвода делать нечего. Нашёл какую-то пластину, ненадолго, но хватит. Попробуем еще раз. Есть просадка. Но блок работает. Регулировка напряжения идёт. Можем вставить этой схеме зачёт.

Видео Radioblogful. Видеоблог паяльщика.

Обычно это:

  • напряжение необходимой величины и знака;
  • коэффициент пульсации выходного напряжения, соответствующий определенным частотам;
  • наличие или отсутствие стабилизации выходного напряжения;
  • номинальный и максимальный ток нагрузки;
  • защита от перегрузки и короткого замыкания.

Общее описание

Особенность блока питания (БП) в том, что он сделан как отдельный внешний узел. Лабораторный БП - это корпус с лицевой панелью, регуляторами-переключателями, вольтметром, амперметром, выходными клеммами и сетевым шнуром. Далее расскажем нашим читателям о том, что необходимо учесть при самостоятельном изготовлении регулируемого блока питания и как получить оптимальный результат при минимальных затратах.

Для начала остановимся на более широком толковании критериев, которые перечислены выше. Начинаем по списку и рассматриваем напряжение необходимой величины и знака. Это самый важный момент, который в целом определяет схему и конструкцию источника питания. Первое, что необходимо учитывать - это соответствие решаемым задачам. Их число всегда ограничено мощностью БП и, как следствие этого, качеством выходного напряжения.

Пульсации выходного напряжения - это нежелательный параметр, который состоит из низкочастотной составляющей, кратной частоте питающего напряжения и дополнительных более высоких частот. Чтобы влиять теми или иными способами на этот параметр в широком спектре частот, потребуется осциллограф. Иначе его сложно будет оценить.

Стабилизация выходного напряжения - важнейшая характеристика блока питания. Она уменьшает до минимальной величины низкочастотные пульсации и улучшает качество работы нагрузки. Поскольку стабилизатор содержит управляемый элемент, появляется возможность управления выходным напряжением.

Максимальные токи определяют потребительские свойства БП. Чем они больше, тем шире область применения БП. Дополнительно можно упомянуть и напряжения. Падение напряжения на управляемом элементе стабилизатора приводит к его нагреву и ограничивает область применения БП. Поэтому нужны поддиапазоны напряжения, которое подается на вход стабилизатора. Переключение между ними позволяет уменьшить нагрев управляемого элемента стабилизатора при необходимом выходном напряжении.

Защита от перегрузки и короткого замыкания предохраняет управляемый элемент от повреждения током недопустимо большой силы.

Две концепции

Для безопасной эксплуатации любого электрооборудования, с которым непосредственно контактирует человек, необходима надежная изоляция от питающей сети 220 В. Наилучшим решением этой задачи является применение трансформатора. Современный уровень развития техники дает варианты решений, из которых можно сделать выбор. Например, трансформатор может быть:

  • либо в качестве самостоятельного узла и выполнен на стальном сердечнике как стандартный трансформатор (СТ) с первичной обмоткой, непосредственно присоединяемой к электросети;
  • либо в составе инверторной схемы как импульсный трансформатор (ИТ).

Рассмотрим потребительские свойства обоих вариантов. Начнем с непреодолимых характеристик. Для СТ это габариты и вес. Их невозможно изменить, поскольку они связаны воедино с электрической мощностью, соответствующей частоте 50 Гц сети 220 В. Для ИТ это электромагнитные помехи. Если планируется электропитание чувствительных усилителей или радиосхем, ИП обязательно внесет помехи, которые что-то испортят, накладываясь на полезный сигнал. Но если перечисленных задач не планируется, можно взять за основу один из стандартных блоков питания для компьютера.

Компьютерный блок

В таком решении хорошей стороной является получение нескольких стабилизированных напряжений при мощности, которую можно выбрать. Ее величина стандартизована и лежит в пределах от 60 до 1700 Вт. Но можно найти и более мощный блок. Соответственно, и его цена будет порядка $500. Но в результате получаем несколько напряжений компьютерного стандарта: 3,3 В, 5 В и 12 В и токи большой силы - 20 А или больше. Все они привязаны к общему проводу. Поэтому их нельзя соединять последовательно с целью получения более высокого суммарного напряжения.

Другим неудобством компьютерного БП является его неспособность надежно работать с быстро меняющейся нагрузкой. Он спроектирован для электропитания в компьютере памяти, процессора и дисковых устройств. То есть при включении он сразу же загружается почти на полную мощность. Она изменяется только по мере загруженности процессора, но несущественно. Для того чтобы без хлопот работать с таким БП, его надо минимально нагрузить на резистор по выходу 5 В. Для этого можно использовать самодельные спирали из нихрома. Величина сопротивления определяется экспериментально подбором исходя из примерно 0,12 мощности БП и напряжения 5 В.

При слишком малом токе инвертор БП не будет работать, и на подбираемом резисторе не будет напряжения. Регулировать каждое из напряжений 3,3 В, 5 В и 12 В можно только дополнительным стабилизатором. Иначе надо вскрывать блок и вносить изменения в его схему. Наиболее экономичным решением управляемого элемента является проходной транзистор. А это значит, что на выходе каждого канала после стабилизатора плавно регулируемое напряжение будет соответствовать примерно 2,3 В, 4 В и 8 В или меньше. В зависимости от того, как настроен стабилизатор напряжения.

Выбираем схему

БП лучше всего сделать на основе специализированных микросхем 142ЕН3, 142ЕН4, 1145ЕН3, К142ЕН3А, К142ЕН3Б, К142ЕН4А, К142ЕН4Б, КР142ЕН3 или аналогичных им:

Для нашего БП применим микросхему 142ЕН3. У нее такие основные параметры:

  • Напряжение на входе стабилизатора устанавливается переменным резистором R1.

Но для работы с большими величинами токов нагрузки в схему вводится один или больше силовых транзисторов. Это показано далее на изображениях:

Для правильной работы микросхему питаем от канала 12 В. Коллектор каждого транзистора соединяем с одним из выходных каналов компьютерного БП. Вариант с несколькими транзисторами обеспечивает номинальный ток нагрузки 20 А. Дополнительные транзисторы подбираются соответственно мощности компьютерного БП. В результате получаем общую схему регулируемого блока питания:

  • Транзисторы и микросхему обязательно размещаем на общем радиаторе.

Транзисторы будут нагреваться тем больше, чем меньше напряжение на выходе. Поэтому надо расположить микросхему как можно ближе к транзистору. Срабатывание тепловой защиты в ней позволить избежать теплового повреждения транзисторов. Такой блок питания можно использовать для зарядки аккумулятора автомобиля и других целей, соответствующих диапазону напряжений от 0 до 12 вольт.

  • Чтобы использовать каждый канал по максимуму напряжения, надо сделать специальный переключатель на два положения (на схемах не показан). Его задача состоит в том, чтобы соединять выходную клемму канала напрямую, минуя стабилизатор.

Если необходимо получить более высокое напряжение, проще всего продублировать упомянутое устройство. В результате можно получить несколько комбинаций выходных параметров:

  • биполярный источник питания 12 В;
  • однополярный источник питания 3,7 В, 8,7 В, 12 В, 15,3 В, 17 В и 24 В.

Все перечисленные режимы можно получить в одном БП соответствующим положением переключателей. Для регулировки напряжения в каждом плече биполярного источника питания 12 В потребуется сдвоенный стабилизатор. Схема его показана далее на изображении. Однополярный источник питания не нуждается во втором стабилизаторе. Микросхема стабилизатора напряжения позволяет применить еще один компьютерный БП и тем самым достичь напряжения 36 В.

  • Однополярный источник питания, собранный на основе двух–трех компьютерных БП, использует один стабилизатор и дополнительный коммутатор. Он переключает каналы компьютерных БП и формирует на входе стабилизатора то или иное напряжение поддиапазона. Поскольку при этом схема усложняется, эта опция не показана.

Заключение

Следует заметить, что два компьютерных БП удвоят мощность, а три - утроят. При этом в сравнении с трансформаторным вариантом (на стальном сердечнике) полученная конструкция будет компактнее и легче. Это объясняется тем, что для получения эффективной фильтрации напряжения выпрямителя на низкой стороне при частоте 50 Гц потребуются электролитические конденсаторы в тысячи микрофарад. Если повторять все 6–9 каналов напряжений, которые получаются при использовании двух–трех компьютерных БП, габариты варианта СТ получатся заметно больше.

Важно учесть несколько видов защиты, уже встроенные в компьютерный БП. Иначе их придется либо дополнительно изготавливать, либо без них получится менее надежный блок.

Также не получится достичь силы тока, характерной для компьютерного БП. Поэтому рекомендуем остановить свой выбор на предложенном регулируемом блоке питания. Поскольку схема его проста, ее можно собрать навесным монтажом. Опорные монтажные колодки при этом размещаются на радиаторе транзистора. Корпус и дизайн БП может быть разнообразным. Он зависит от выбора радиаторов, коммутаторов, амперметра и вольтметра. Поскольку своими руками такое устройство может сделать только умелец с определенным опытом, не имеет смысла навязывать особое мнение.

Монтаж регулируемого пола — быстрый, экономичный и достаточно простой процесс создания чернового напольного покрытия с идеально ровной плоскостью. Эта статья познакомит вас с новой технологией, расскажет о разновидностях регулируемых полов, области применения и процессе монтажа.

Какие проблемы решает регулируемый пол

Регулируемые лаги — технология создания исключительно легкого пола по методологии сухого ремонта, поэтому основная сфера их применения — высотные здания и дома старой постройки, где увеличение нагрузки на перекрытия чревато неприятностями. Технология особенно актуальна при необходимости поднять уровень пола на 120 мм и более, с чем сухая стяжка уже не справится.

По экологичности и практичности правильно смонтированный пол отвечает характеристикам системы стационарных лаг. Звукоизоляция такого пола достаточно хорошая, отдача тепла на нижние этажи минимальна за счет сокращения мостиков холода. Пространство между лагами имеет сплошную вентиляцию, поэтому в наполнителе пола не заводятся плесень и грибок.

Другая особенность такого пола — возможность устройства идеально ровного покрытия под плитку или наливные полы в кратчайшие сроки — 7-8 м 2 за один час работы двух человек и до 3 м 2 при работе в одиночку.

Установка системы лаг на металлических кронштейнах

Если вам необходимо настелить пол в небольшом помещении, оригинальную технологию лучше не использовать. Во-первых, это неоправданно долгий поиск комплектующих, а во-вторых, пол на регулируемых лагах лучше укладывать на площади более 6 м 2 , на меньших пространствах экономия времени и средств не так ощутима. Вместо этого можно использовать установку лаг на металлических кронштейнах.

Для укладки необходим брус 60х60 мм влажностью не более 10% без следов пороков и коробления. Также необходимо приобрести или изготовить металлические П-образные кронштейны с толщиной стенки не менее 2,5 мм и расстоянием между полками, соответствующем толщине бруса. В каждой полке на расстоянии в 30 мм от торца должно быть отверстие диаметром 11 мм.

На полу нанесите разметку линиями, по которой планируется установка лаг. Первую лагу укладывайте вдоль длинной стены с отступом в 20 см, все последующие — с шагом в 40 см. Для сращивания лаг одного ряда используйте два кронштейна, установленных подряд. Установите все кронштейны по линиям разметки и закрепите каждый к бетону двумя дюбелями быстрого монтажа 6х60 с бортиком «грибок».

Когда все кронштейны установлены, выставьте по горизонтальному уровню крайний от стены ряд лаг, подкладывая под них обрезки брусьев и щепу. На самом высоком участке перекрытия брус должен выступать над кронштейном на 3-5 мм. Через перфорацию в полках кронштейна закрепите брус двумя саморезами с обеих сторон.

Используя шнуровку или лазерный нивелир , перенесите уровень первого ряда на последний, выровняйте брусья и временно закрепите их в кронштейнах саморезами. Натяните шнуровку или используйте регулировку по лазеру на мишени, чтобы выровнять все остальные лаги. После временного крепления лаг просверлите их сверлом на 12 мм сквозь отверстия в кронштейнах, вставьте болты и затяните их самоконтрящейся гайкой.

Монтаж регулируемого пола на болт-стойках

Для устройства пола по оригинальной технологии необходимо приобрести пластиковые болт-стойки длиной 100 или 150 мм и металлические дюбель-гвозди 6х40 мм в количестве около 5-6 шт. на один м 2 пола. Специальные лаги с отверстиями и резьбой можно заменить на обычный брус 50х50 мм влажностью до 10%, но потребуется бур по дереву и машинный метчик диаметром 24 мм с шагом 3 мм.

Разметка для установки лаг начинается с базовой линии, которая имеет отступ от стены, равный длине фанерного листа. В помещениях с нормальной проходимостью крайние лаги должны отстоять от стены на 15 см, шаг между остальными лагами составляет 40-45 см. Если нагрузка на пол выше обычной, дистанция от стен составит менее 10 см, а шаг установки — до 30 см.

Подготовьте брусья: просверлите в них отверстия строго перпендикулярно поверхности в 10 см от краев, затем равномерно распределите остальные отверстия по длине, чтобы расстояние между ними было не более 40-50 см. Метчиком нарежьте в отверстиях резьбу и закрутите в них болт-стойки. При вкручивании стоек предварительно регулируйте их длину в соответствии с высотой подъема. Для вкручивания болт-стоек используйте шестигранный ключ.

Установите брусья по линиям разметки, ориентируя стойки шестигранными отверстиями вверх. Торцы лаг должны отстоять от стены на 10 см. Произведите предварительную регулировку с допустимой погрешностью в 1 см, выводя лаги на проектную высоту. Сквозь отверстие внутри болт-стойки отметьте длинным буром места сверления, затем сдвиньте лаги и проделайте отверстия 6 мм в бетонном полу на глубину до 50 мм.

Сперва закрепите крайние стойки лаг: опустите в отверстие дюбель-гвоздь и расклиньте его, используя молоток и металлический прут или бур от перфоратора. Вращая закрепленные стойки, точно выставьте лаги по уровню, используя шнуровку или лазерную разметку. Закручивайте центральные стойки, пока они не упрутся в пол, и закрепите их дюбель-гвоздями. Произведите окончательную регулировку пола, используя строительный уровень, перекрывающий не менее трех лаг. Лаги допускается сращивать в торец с подрубкой в полдерева на длину до 5 см и с последующим скреплением стыка болтом М10.

Устройство чернового покрытия

Когда лаги установлены, а пространство между ними заполнено утеплителем, производится настил покрытия. Для создания прочной и ровной поверхности необходимо уложить на лаги два слоя влагостойкой фанеры толщиной от 12 мм и более.

Первый слой укладывается длинной стороной поперек лаг и крепится к брусьям саморезами 55 мм. Шаг крепления саморезов — 15-17 см по краям и 20-25 см в центре листа. Вкручивайте крепеж не ближе 15 мм от торца фанеры и утапливайте шляпки заподлицо.

Второй ряд первого слоя начинается с подрезки половины листа для обеспечения разбежки между стыками на половину длины. Толщина стыков не должна превышать 2-3 мм, а отступ от стен — не более 15 мм. Когда первый слой фанеры уложен, разметьте на поверхности места пролегания лаг.

Укладывайте листы второго слоя перпендикулярно листам первого. При необходимости подрезайте элементы пола, чтобы расстояние между стыками в первом и втором слое было не менее 20 см. Скрепляйте листы между собой саморезами 35 мм, не менее 30 штук на 1 м 2 с шагом установки по краю в 30 см. Крепите второй слой к лагам саморезами 65 мм не менее чем в 15 местах на 1 м 2 . Допустимый стыковой зазор во втором слое — 4 мм, расстояние от стен — не более 6 мм.

После монтажа второго слоя фанеры с поверхности листов нужно убрать пыль и опилки, затем нанести два слоя адгезивной грунтовки вне зависимости от того, каким будет напольное покрытие. Зазоры между плитами и от стен нужно заполнить полиуретановой пеной, а лучше — силиконовым герметиком. Поверх пола на регулируемых лагах можно настелить любой тип напольного покрытия и даже выполнить подготовительную стяжку.

Если Вы сам деятель науки или просто любознательный человек, и Вы частенько смотрите или читаете последние новости в сфере науки или техники. Именно для Вас мы создали такой раздел, где освещаются последние новости мира в сфере новых научных открытий, достижений, а также в сфере техники. Только самые свежие события и только проверенные источники.


В наше прогрессивное время наука двигается быстрыми темпами, так что не всегда можно уследить за ними. Какие-то старые догмы рушатся, какие-то выдвигаются новые. Человечество не стоит на месте и не должно стоять, а двигателем человечества, являются ученые, научные деятели. И в любой момент может произойти открытие, которое способно не просто поразить умы всего населения земного шара, но и в корне поменять нашу жизнь.


Особая роль в науке выделяется медицине, так как человек, к сожалению не бессмертен, хрупок и очень уязвим к всякого рода заболеваниям. Многим известно, что в средние века люди в среднем жили лет 30, а сейчас 60-80 лет. То есть, как минимум вдвое увеличилась продолжительность жизни. На это повлияло, конечно, совокупность факторов, однако большую роль привнесла именно медицина. И, наверняка 60-80 лет для человека не предел средней жизни. Вполне возможно, что когда-нибудь люди перешагнут через отметку в 100 лет. Ученые со всего мира борются за это.


В сфере и других наук постоянно ведутся разработки. Каждый год ученые со всего мира делаю маленькие открытия, потихоньку продвигая человечество вперед и улучшая нашу жизнь. Исследуется не тронутые человеком места, в первую очередь, конечно на нашей родной планете. Однако и в космосе постоянно происходят работы.


Среди техники особенно рвется вперед робототехника. Ведется создание идеального разумного робота. Когда-то давно роботы – были элементом фантастики и не более. Но уже на данный момент некоторые корпорации имеют в штате сотрудников настоящих роботов, которые выполняют различные функции и помогают оптимизировать труд, экономить ресурсы и выполнять за человека опасные виды деятельности.


Ещё хочется особое внимание уделить электронным вычислительным машинам, которые ещё лет 50 назад занимали огромное количество места, были медленными и требовали для своего ухода целую команду сотрудников. А сейчас такая машина, практически, в каждом доме, её уже называют проще и короче – компьютер. Теперь они не только компактны, но и в разы быстрее своих предшественников, а разобраться в нем может уже каждый желающий. С появлением компьютера человечество открыло новую эру, которую многие называют «технологической» или «информационной».


Вспомнив о компьютере, не стоит забывать и о создании интернета. Это дало тоже огромный результат для человечества. Это неиссякаемый источник информации, который теперь доступен практически каждому человеку. Он связывает людей с разных континентов и молниеносно передает информацию, о таком лет 100 назад невозможно было даже мечтать.


В этом разделе, Вы, безусловно, найдете для себя что-то интересное, увлекательное и познавательное. Возможно, даже когда-нибудь Вы сможете одним из первых узнать об открытии, которое не просто изменит мир, а перевернет Ваше сознание.

Не только радиолюбителям, но и просто в быту, может понадобиться мощный блок питания. Чтоб было до 10А выходного тока при максимальном напряжении до 20 и более вольт. Конечно-же, мысль сразу направляется на ненужные компьютерные блоки питания ATX. Прежде чем приступать к переделке, найдите схему на именно ваш БП.

Последовательность действий по переделке БП ATX в регулируемый лабораторный.

1. Удаляем перемычку J13 (можно кусачками)

2. Удаляем диод D29 (можно просто одну ногу поднять)

3. Перемычка PS-ON на землю уже стоит.


4. Включаем ПБ только на короткое время, так как напряжение на входа будет максимальное (примерно 20-24В). Собственно это и хотим увидеть. Не забываем про выходные электролиты, расчитанные на 16В. Возможно они немного нагреются. Учитывая Ваши "вздутости", их все равно придется отправить в болото, не жалко. Повторюсь: все провода уберите, они мешают, а использоваться будут только земляные и +12В их потом назад припаяете.

5. Удаляем 3.3-х вольтовую часть: R32, Q5, R35, R34, IC2, C22, C21.


6. Удаляем 5В: сборку шоттки HS2, C17, C18, R28, можно и "типа дроссель" L5.


7. Удаляем -12В -5В: D13-D16, D17, C20, R30, C19, R29.

8. Меняем плохие: заменить С11, С12 (желательно на бОльшую ёмкость С11 - 1000uF, C12 - 470uF).

9. Меняем несоответствующие компоненты: С16 (желательно на 3300uF х 35V как у меня, ну хотя бы 2200uF x 35V обязательно!) и резистор R27 - у Вас его уже нет вот и замечательно. Советую его заменить на более мощный, например 2Вт и сопротивление взять 360-560 Ом. Смотрим на мою плату и повторяем:


10. Убираем всё с ног TL494 1,2,3 для этого удаляем резисторы: R49-51 (освобождаем 1-ю ногу), R52-54 (...2-ю ногу), С26, J11 (...3-ю ногу)


11. Не знаю почему, но R38 у меня был перерублен кем-то:) рекомендую Вам его тоже перерубить. Он участвует в обратной связи по напряжению и стоит параллельно R37-му.

12. Отделяем 15-ю и 16-ю ноги микросхемы от "всех остальных", для этого делаем 3 прореза существуюших дорожек а к 14-й ноге восстанавливаем связь перемычкой, как показано на фото.


13. Теперь подпаиваем шлейф от платы регулятора в точки согласно схемы, я использовал отверстия от выпаянных резисторов, но к 14-й и 15-й пришлось содрать лак и просверлить отверстия, на фото.

14. Жила шлейфа №7 (питание регулятора) можно взять от питания +17В ТЛ-ки, в районе перемычки, точнее от неё J10/ Просверлить отверстие в дорожку, расчистить лак и туда. Сверлить лучше со стороны печати.


Ещё посоветовал бы поменять конденсаторы высоковольтные на входе (С1, С2). У Вас они очень маленькой ёмкости и наверняка уже изрядно подсохли. Туда нормально станут 680uF x 200V. Теперь, собираем небольшую платку, на которой будут элементы регулировки. Вспомогательные файлы смотрите
Похожие статьи

© 2024 rsrub.ru. О современных технологиях кровли. Строительный портал.