Преступление как бифуркация в динамическом хаосе. Бифуркация (теория колебаний)

Для изучения видов бифуркации желательно разобраться с самим . В общем случае исследование всего фазового пространства на точки бифуркации является сложной задачей для n-мерного пространства, поэтому проводятся локальные исследования, а полученные точки бифуркации называются локальными точками бифуркации . За локальными точками бифуркации можно проследить, наблюдая развитие малых возмущений в системе Бифуркации состояний равновесия и периодических движений на примере шарика. Простейшими и наиболее важными из них являются бифуркации состояний равновесия и периодических движений.

Бифуркация положений равновесия

К основным бифуркациям состояний равновесия относят:
  1. слияние и последующее исчезновение двух состояний равновесия. Примером может служить движение шарика в потенциальной «яме» с «полочкой» (рис. 1). При сглаживании «полочки» BD состояние равновесия «седло» S и центр С 2 сливаются и исчезают (рис. 2).
Рисунок 1 - Схема движения шарика в «яме» с «полочкой» (а) и его фазовый портрет (б) Рисунок 2 - Схема движения шарика после бифуркации (а) и его фазовый портрет (б)
  • Рождение предельного цикла из состояния равновесия. Пример такой бифуркации бифуркация Хопфа .
Рассмотрим динамическую систему (1) Динамическаия система Она является упрощенным выражением сложной динамической системы, описываемой функциями x(t) и y(t) , которые выражаются через соответствующие полярные координаты: и называется системой Хопфа. Система (1) зависит от двух параметров, один из которых λ будет для нас ключевым, а другой с=const . Решения задачи Коши при некоторых заданных начальных значения r(t=0)=r 0 , "phi;(t=0)="phi; 0 при λ < 0 дает нам фазовый портрет и график динамики, изображенные на рис. 3.
Рисунок 3 - График динамики (а) и фазовый портрет (б) В данном случае существует единственная особая точка - устойчивый фокус . Построим теперь график динамики и фазовый портрет для случая λ > 0 (λ = 4) (см. рис. 4)
Рисунок 3 - График динамики (а) и фазовий портрет (б) при λ > 0 Разными цветами изображены развязки при различных начальных условиях. Как видим, после короткого переходного процесса система входит в колебательный режим, причем амплитуда и частота колебаний не зависят от начальных условий (при любых начальных условиях система придет в одно и то же колебательное состояние). На фазовом портрете решение для разных начальных условий как бы «наматываются» на замкнутую кривую. Эта кривая, к которой при t -> ∞ стремятся решения задачи Коши, является аттрактором и называется предельным циклом . Колебательный процесс, описывающий этот предельный цикл, называется автоколебаниями . Развязки в виде автоколебаний возможны только в существенно нелинейных динамических системах. Динамическая система Хопфа имеет нелинейность в виде куба параметра, причем дополнительная нелинейность накладывается благодаря определению функций x(t) и y(t) как выражений тригонометрических функций. Можно доказать, что для данной динамической системы амплитуда колебаний равна . Итак, λ = 0 - бифуркационные значения параметра. В этой точке узел теряет устойчивость и вместо него рождается устойчивый предельный цикл. Данная бифуркация рождения предельного цикла из неподвижной точки называется бифуркацией Хопфа , а рождение автоколебаний - мягким (при малых изменениях параметра колебания имеют малую амплитуду, которая увеличивается с его ростом). Жесткое рождения автоколебаний - при малых изменениях параметра происходит «выброс» траектории в область притяжения другого аттрактора.
  • Рождение из одного равновесного состояния трех состояний равновесия - спонтанное нарушение симметрии. Например, при движении шарика в желобе при условии появления в нем бугорка появляется бифуркация, при которой из вырожденного состояния типа «центр» возникают три состояния равновесия - седло S и центры С1 и С2 (рис. 4)

Рисунок 4 - Рождения из одного состояния равновесия трех при малом изменении параметра (формы желоба): а) форма желоба с одним минимумом и соответствующий фазовый портрет с одним состоянием равновесия типа «центр»; б) форма желоба с двумя минимумами и соответствующий фазовый портрет с тремя состояниями равновесия: «седло» S и «центры» С1 и С2

Бифуркации рождения (гибели) периодического движения

Всем бифуркация рождения или гибели состояний равновесия соответствует прохождение одного или нескольких корней через ноль. Такая возможность проиллюстрирована на рис. 5, где изображена гибель двух состояний равновесия типа «седла» и «узла». Аналогичная бифуркация встречается в задачах о конкуренции видов Х1 и Х2, питающихся из одного источника. Соответствующая динамическая система, описывающая численность популяций, задается уравнениями: При ρ 1,2 > 1 в системе возможна «победа» одного из видов. При уменьшении любого из параметров ρ 1,2 до значения, меньшего от 1, при любых начальных условиях будет выживать только один вид (рис. 5, б). Рисунок 5 - Фазовые портреты численности популяций, а) при ρ 1 < 1 , ρ 2 > 1 ; б) при ρ 1,2 > 1

Бифуркации смены устойчивости периодических движений

Весомая характеристика бифуркации устойчивости - значения мультипликаторов в критический момент, являющихся коэффициентами усиления (затухания) малых возмущений на фоне периодического движения за период Т. В автономной системе один из мультипликаторов всегда равен единице, поэтому в дальнейшем говорим о других. Если все мультипликаторы по модулю меньшие единицы, то начальное периодическое движение устойчиво. Бифуркации, связанные с исчезновением устойчивости, происходят при таких значениях параметров системы, при которых один или несколько из них равны по модулю 1.

Предисловие
Глава 1. Бифуркации положений равновесия
§ 1. Семейства и деформации
1.1. Семейства векторных полей
1.2. Пространство струй
1.3. Лемма Сарда и теоремы трансверсальности
1.4. Простейшие приложения: особые точки типичных векторных полей
1.5. Топологически нереальные деформации
1.6. Теорема сведения
1.7. Типичные и главные семейства
§ 2. Бифуркации особых точек в типичных однопараметрических семействах
2.1. Типичные ростки и главные семейства
2.2. Мягкая и жесткая потеря устойчивости
§ 3. Бифуркации особых точек в многопараметрических семействах общего положения при однократном вырождении линейной части
3.1. Главные семейства
3.2. Бифуркационные диаграммы главных семейств (3±)
3.3. Бифуркационные диаграммы (относительно слабой эквивалентности) и фазовые портреты главных семейств (4±)
§ 4. Бифуркации особых точек векторных полей с двукратным вырождением линейной части
4.1. Список вырождений
4.2. Два вулевых собственных значения
4.3. Редукции к двумерным системам
4.4. Нулевое и пара чисто мнимых собственных значений
4.5. Две чисто мнимых пары
4.6. Главные деформации уравнений трудного типа в задаче о двух мнимых парах (по Жолондеку)
§ 5. Показатели мягкой и жесткой потери устойчивости
5.1. Определевия
5.2. Таблица показателей
Глава 2. Бифуркации предельных циклов
§ 1. Бифуркации предельных циклов в типичных однопараметрических семействах
1.1. Мультипликатор 1
1.2. Мультипликатор -1 и бифуркация удвоения периода
1.3. Пара комплексно сопряженных мультипликаторов
1.4. Нелокальные бифуркации в однопараметрических семействах диффеоморфизмов
1.5. Нелокальные бифуркации периодических решений
1.6. Бифуркации распада инвариаитньйс торов
§ 2. Бифуркации циклов в типичных двупараметрических семействах при однократном дополнительном вырождении
2.1. Перечень вырождений
2.2. Мультипликатор 1 или -1 с дополнительным вырождением в нелинейных членах
2.3. Пара мультипликаторов на единичной окружности с дополнительным вырождением в нелинейных членах
§ 3. Бифуркации циклов в типичных двупараметрических семействах при сильных резоиансах порядка (?)
3.1. Нормальная форма в случае унипотентиой жордаиовой клетки
3.2. Усреднение в слоениях Зейферта и Мёбиуса
3.3. Главные поля и деформации
3.4. Версальиость главных деформаций
3.5. Бифуркации стационарных решений периодических дифференциальных уравнений при сильных резонансах порядка (?)
§ 4. Бифуркации предельных циклов при прохождении пары мультипликаторов через (?)
4.1. Вырожденные семейства
4.2. Вырожденные семейства, найденные аналитически
4.3. Вырожденные семейства, найденные численно
4.4. Бифуркации в невырожденных семействах
4.5. Предельвые циклы систем с симметрией четвертого порядка
§ 5. Конечногладкие нормальные формы локальных семейств
5.1. Обзор результатов
5.2. Определения и примеры
5.3. Общие теоремы и деформации нерезоиансных ростков
5.4. Приведение к линейной нормальной форме
5.5. Деформации ростков диффеоморфизмов типа Пуанкаре
5.6. Деформации одиорезоиансиых гиперболических ростков
5.7. Деформации ростков, векторных полей с одним нулевым собственным значением в особой точке
5.8. Функциональные инварианты диффеоморфизмов прямой
5.9. Функциональные инварианты локальных семейств диффеоморфизмов
5.10. Функциональные -инварианты семейств векторных полей
5.11. Функциональные инварианты топологической классификации локальных семейств диффеоморфизмов прямой (по Руссари)
§ 6. Универсальность Фейгенбаума для диффеоморфизмов и потоков
6.1. Каскад удвоений
6.2. Перестройки неподвижных точек
6.3. Каскад (?)-кратных увеличений периода
6.4. Удвоение в гамильтоновых системах
6.5. Оператор удвоения для одномерных "отображений
6.6. Механизм универсального удвоения для диффеоморфизмов
Глава 3. Нелокальные бифуркации
§ 1. Вырождения коразмерности 1. Сводка результатов
1.1. Локальные и нелокальные бифуркации
1.2. Негиперболнческие особые точки
1.3. Негиперболические циклы
1.4. Нетрансверсальиые пересечения многообразий
1.5. Контуры
1.6. Бифуркационные поверхности
1.7. Характеристики бифуркаций
1.8. Сводка результатов
§ 2. Нелокальные бифуркации потоков на двумерных поверхностях
2.1. Полулокальные бифуркации потоков на поверхностях
2.2. Нелокальные бифуркации на сфере; однопараметрический случай
2.3. Типичные семейства векторных полей
2.4. Условия типичности
2.5. Однопараметрические семейства на поверхностях, отличных от сферы
2.6. Глобальные бифуркации систем, с глобальной секущей на торе
2.7. Некоторые глобальные бифуркации на бутылке Клейна
2.8. Бифуркации иа двумерной сфере. Многопараметрический случай
2.9. Некоторые открытые вопросы
§ 3. Бифуркации гомоклинических траекторий негиперболической особой точки
3.1. Узел по гиперболическим переменным
3.2. Седло по гиперболическим переменным: одна гомоклиническая траектория
3.3. Топологическая схема Бернулли
3.4. Седло по гиперболическим переменным: несколько гомоклинических траекторий
3.5. Главные семейства
§ 4. Бифуркации гомоклинических траекторий4 иегиперболического цикла
4.1. Структура семейства гомоклииических траекторий
4.2. Критические и некритические циклы
4.3. Рождение гладкого двумерного аттрактора
4.4. Рождение сложных инвариантных множеств (некритический случай)
4.5. Критический случай
4.6. Двухшаговый переход от устойчивости к турбулентности
4.7. Некомпактное множество гомоклинических траекторий
4.8. Перемежаемость
4.9. Достижимость, недостижимость
4.10. Устойчивость семейств диффеоморфизмов
4.11. Некоторые открытые вопросы
§ 5. Гиперболические особые точки с гомоклинической траекторией
5.1. Предварительные понятия: ведущие направления и седловые величины
5.2. Бифуркации гомоклииических траекторий седла, происходящие на границе множества систем Морса - Смейла
5.3. Требования общности положения
5.4. Главные семейства в R3 и их свойства
5.5. Версальность главных семейств
5.6. Седло с комплексным ведущим направлением в R3
5.7. Добавление: бифуркации гомоклииических петель вне "границы множества систем Морса - Смейла
§ 6. Бифуркации, связанные с иетрансверсальными пересечениями
6.1. Векторные поля без контуров и гомоклииических траекторий
6.2. Теорема о недостижимости
6.3. Модули
6.4. Системы с контурами
6.5. Диффеоморфизмы с нетривиальными базисными множествами
6.6. Векторные поля в R3 с гомоклииической траекторией цикла
6.7. Символическая динамика
6.8. Бифуркации «подков Смейла»
6.9. Векторные поля на бифуркационной поверхности
6.10. Диффеоморфизмы с бесконечным множеством устойчивых периодических траекторий
§ 7. Бесконечные неблуждающие множества
7.1. Векторные поля на двумерном торе
7.2. Бифуркации систем с двумя гомоклииическими кривыми седла
7.3. Системы с аттракторами Фейгенбаума
7.4. Рождение неблуждающих множеств
7.5. Сохранение и гладкость инвариантных многообразий (по Фе-ничелю)
7.6. Вырожденное семейство и его окрестность в функциональном пространстве
7.7. Рождение торов в трехмерном фазовом пространстве
§ 8. Аттракторы и их бифуркации
8.1. Вероятностно предельные множества (по Милнору)
8.2. Статистически предельные множества
8.3. Внутренние бифуркации и кризисы аттракторов
8.4. Внутренние бифуркации и кризисы положений равновесия и циклов
8.5. Бифуркации двумерного тора
Глава 4. Релаксационные колебания
§ 1. Основные понятия
1.1. Пример. Уравнение Ван дер Поля
1.2. Быстрые и медленные движения
1.3. Медленная поверхность и медленное уравнение
1.4. Медленное движение как аппроксимация возмущенного
1.5. Явление срыва
§ 2. Особенности быстрого и медленного движений
2.1. Особенности быстрого движения в точках срыва систем с одной быстрой переменной
2.2. Особенности проектирования медленной поверхности
2.3. Медленное движение систем с одной медленной переменной
2.4. Медленное движение систем с двумя медленными переменными
2.5. Нормальные формы фазовых кривых медленного движения
2.6. Связь с теорией уравнений, не разрешенных относительно производной
2.7. Вырождение контактной структуры
§ 3. Асимптотика релаксационных колебаний
3.1. Вырожденные системы
3.2. Системы первого приближения
3.3. Нормализация быстро-медленных уравнений с двумя медленными переменными при (?)>0
3.4. Вывод систем первого приближения
3.5. Исследование систем первого приближения
3.6. Воронки
3.7. Периодические релаксационные колебания на плоскости
§ 4. Затягивание потери устойчивости при переходе пары собственных значений через мнимую ось
4.1. Типичные системы
4.2. Затягивание потери устойчивости
4.3. Жесткость потери устойчивости в аналитических системах типа 2
4.4. Гистерезис
4.5. Механизм затягивания
4.6. Вычисление момента срыва в аналитических системах
4.7. Затягивание при потере устойчивости циклом
4.8. Затягивание потери устойчивости и «утки»
§ 5. Решения-утки
5.1. Пример: особая точка на складке медленной поверхности
5.2. Существование решений-уток
5.3. Эволюция простых вырожденных уток
5.4. Полулокальное явление: утки с релаксацией
5.5. Утки и (?) и (?)
Рекомендуемая литература
Литература

Эволюционный процесс математически описывается векторным полем в фазовом пространстве (абстрактном пространстве с числом измерений, равном числу переменных, характеризующих состояние системы). Точка фазового пространства задает состояние системы. Приложенный в этой точке вектор указывает скорость изменения состояния. В случае затухания фазовые траектории при любых начальных значениях оканчиваются в одной точке, которая соответствует покою. В таких точках вектор может обращаться в нуль. Такие точки называются положениями равновесия (состояние не меняется с течением времени). Фазовые траектории создают складки внутри фазового пространства.

Область фазового пространства, заполненного хаотическими траекториями, называется странными аттракторами .

Важнейшим свойством странных аттракторов является фрактальность. Фракталы – это объекты, проявляющие по мере увеличения все более число деталей. Хаос порождает фракталы, а фазовая траектория фракталов обладает самоподобием , т.е. при выделении двух близких точек на фазовой траектории фрактала и последующем увеличении масштаба траектория между этими точками окажется столь хаотичной, как и вся в целом. Введение фрактальных множеств позволяет объяснить и предсказать многие явления в самых различных областях.

Математические образы теории катастроф реализуются в волновых полях. Геометрическое место точек, в которых происходит фокусировка волнового поля, называется в оптике каустиками. При пересечении каустик происходит скачкообразное изменение состояния системы. Момент перехода определяется свойствами системы и уровнем флуктуации в ней. При переходе выделяют два принципа: принцип максимального промедления, определяемый существованием устойчивого уровня, и принципом Максвелла, определяющий состояние системы глобальным минимумом.

Последовательность бифуркаций, возникающая при углублении неравновесности в системе, меняется, и процесс пойдет по разным сценариям (например, переход от ламинарного течения к турбулентному).

После прохождения параметра через бифуркационное значение, соответствующее рождению цикла, или мягкому возникновению автоколебаний, система остается в окрестности неустойчивого состояния некоторое время, за которое параметр меняется на конечную величину. После этого система скачком переходит в момент бифуркации в автоколебательный режим (уже ставший жестким).

На рис.4 изображен фазовый портрет системы, описывающей взаимоотношение хищника и жертвы (скажем, щук и карасей). Фазовое пространство – положительный квадрант плоскости. По оси абсцисс отложено число карасей, по оси ординат – щук. Точка Р – положение равновесия. Точка А соответствует равновесному количеству карасей при 16 количестве щук, меньшем равновесного. Видно, что с течением времени в системе устанавливаются колебания; равновесное состояние рис. Неустойчиво. Установившиеся колебания изображаются замкнутой кривой на фазовой плоскости . Эта кривая называется предельным циклом.

В окрестности точки, не являющейся положением равновесия, разбиение фазового пространства на фазовые кривые устроено так же, как разбиение на параллельные прямые: семейство фазовых кривых можно превратить в семейство параллельных прямых заменой координат. В окрестности положения равновесия картина сложнее.

Рис.4. Фазовый портрет эволюции системы «хищник–жертва»

Системы, описывающие реальные эволюционные процессы, как правило, общего положения. Действительно, такая система всегда зависит от параметров, которые никогда не бывают известны точно.

Управление без обратной связи всегда приводит к катастрофам: важно, чтобы лица и организации, принимающие ответственные решения, лично, материально зависели от последствий этих решений.

Трудность проблемы перестройки связана с ее нелинейностью. Привычные методы управления, при которых результаты пропорциональны усилиям, тут не действуют, и нужно вырабатывать специфически нелинейную интуицию, основанную на порой парадоксальных выводах нелинейной теории.

Вот некоторые качественные простейшие выводы из математической теория перестроек применительно к нелинейной системе, находящейся в установившемся устойчивом состоянии, признанном, плохим, поскольку в пределах видимости имеется лучшее, предпочтительное устойчивое состояние системы.

1. Постепенное движение в сторону лучшего состояния сразу же приводит к ухудшению. Скорость ухудшения при равномерном движении к лучшему состоянию увеличивается.

2. По мере движения от худшего состояния к лучшему сопротивление системы изменению ее состояния растет.

3. Максимум сопротивления достигается раньше, чем самое плохое состояние, через которое нужно пройти для достижения лучшего состояния. После прохождения максимума сопротивления состояния продолжает ухудшаться.

4. По мере приближения к самому плохому состоянию на пути перестройки сопротивление, начиная с некоторого момента, начинает уменьшаться, и как только самое плохое состояние пройдено, не только полностью исчезает сопротивление, а система начинает притягиваться к лучшему состоянию.

5. Величина ухудшения, необходимого для перехода в лучшее состояние, сравнима с финальным улучшением и увеличивается по мере совершенствования системы. Слабо развитая система может перейти в лучшее состояние почти без предварительного ухудшения, в то время как развитая система, в силу своей устойчивости, на такое постепенное, непрерывное улучшение неспособна,

6. Если систему удается сразу, скачком, а не непрерывно, перевести из плохого устойчивого состояния достаточно близко к хорошему, то дальше она сама собой будет эволюционировать в сторону хорошего состояния.

Без математической теории перестроек сознательное управление сложными и плохо известными нелинейными системами практически невозможно. Не требуется, однако, специальной математической теории, чтобы понять, что пренебрежение законами природы и общества (будь то закон тяготения, закон стоимости или необходимость обратной связи), падение компетентности специалистов и отсутствие личной ответственности за принимаемые решения приводит рано или поздно к катастрофе.

Эта публикация цитируется в (всего в 63 статьях)

Теория бифуркаций

Аннотация: Теория бифуркаций фазовых портретов дифференциальных уравнений вблизи положений равновесия и предельных циклов изложена в первых двух главах, Изложение начинается с основных понятий и фактов и заканчивается новыми результатами о бифуркациях в типичных однопараметрических семействах, происходящие на границе множества систем Морса-Смейла. Релаксационные колебания изучены с точки зрения теории особенностей и теории нормальных форм; включены результаты о затягивании потери устойчивости и решениях-утках.
Библ. 206.

Полный текст: PDF файл (31704 kB)

Реферативные базы данных:

Тип публикации: Статья
УДК: 517.925 +517.928

Образец цитирования: В. И. Арнольд, В. С. Афраймович, Ю. С. Ильяшенко, Л. П. Шильников, “Теория бифуркаций”, Динамические системы - 5 , Итоги науки и техн. Сер. Соврем. пробл. мат. Фундам. направления, 5 , ВИНИТИ, М., 1986, 5-218

Цитирование в формате AMSBIB

\RBibitem{ArnAfrIly86}
\by В.~И.~Арнольд, В.~С.~Афраймович, Ю.~С.~Ильяшенко, Л.~П.~Шильников
\paper Теория бифуркаций
\inbook Динамические системы~--~5
\serial Итоги науки и техн. Сер. Соврем. пробл. мат. Фундам. направления
\yr 1986
\vol 5
\pages 5--218
\publ ВИНИТИ
\publaddr М.
\mathnet{http://mi.сайт/intf40}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=895653}
\zmath{https://zbmath.org/?q=an:0797.58003}

Образцы ссылок на эту страницу:

  • http://mi.сайт/intf40
  • http://mi.сайт/rus/intf/v5/p5
    ОТПРАВИТЬ:

    Эта публикация цитируется в следующих статьяx:

    1. Г. Р. Белицкий, “Гладкая эквивалентность ростков векторных полей с одним нулевым или парой чисто мнимых собственных значений”, Функц. анализ и его прил. , 20 :4 (1986), 1-8 ; G. R. Belitskii, “Smooth equivalence of germs of vector fields with a single zero eigenvalue or a pair of purely imaginary eigenvalues”, Funct. Anal. Appl. , 20 :4 (1986), 253-259
    2. М. А. Шерешевский, “О хаусдорфовой размерности фрактальных базисных множеств, возникающих при некоторых глобальных бифуркациях потоков на трехмерных многообразиях”, УМН , 43 :3(261) (1988), 199-200 ; M. A. Shereshevskii, “On the Hausdorff dimension of fractal basis sets arising in certain global bifurcations of flows on three-dimensional manifolds”, Russian Math. Surveys , 43 :3 (1988), 223-224
    3. А. В. Бабин, М. И. Вишик, “Спектральное и стабилизированное асимптотиче­ское поведение решений нелинейных эволюционных уравнений”, УМН , 43 :5(263) (1988), 99-132 ; A. V. Babin, M. I. Vishik, “Spectral and stabilized asymptotic behaviour of solutions of non-linear evolution equations”, Russian Math. Surveys , 43 :5 (1988), 121-164
    4. Б. А. Хесин, “Версальные деформации пересечений инвариантных подмногообразий динамических систем”, УМН , 44 :3(267) (1989), 181-182 ; B. A. Khesin, “Versal deformations of intersections of invariant submanifolds of dynamical systems”, Russian Math. Surveys , 44 :3 (1989), 201-203
    5. Ю. С. Ильяшенко, С. Ю. Яковенко, “Конечно-гладкие нормальные формы локальных семейств диффеоморфизмов и векторных полей.”, УМН , 46 :1(277) (1991), 3-39 ; Yu. S. Ilyashenko, S. Yu. Yakovenko, “Finitely-smooth normal forms of local families of diffeomorphisms and vector fields”, Russian Math. Surveys , 46 :1 (1991), 1-43
    6. И. Д. Чуешов, “Глобальные аттракторы в нелинейных задачах математической физики”, УМН , 48 :3(291) (1993), 135-162 ; I. D. Chueshov, “Global attractors for non-linear problems of mathematical physics”, Russian Math. Surveys , 48 :3 (1993), 133-161
    7. Е. В. Николаев, “Бифуркации предельных циклов дифференциальных уравнений, допускающих инволютивную симметрию”, Матем. сб. , 186 :4 (1995), 143-160 ; E. V. Nikolaev, “Bifurcations of limit cycles of differential equations admitting an involutive symmetry”, Sb. Math. , 186 :4 (1995), 611-627
    8. С. В. Гонченко, “Модули $\Omega$ -сопряженности двумерных диффеоморфизмов с негрубым гетероклиническим контуром”, Матем. сб. , 187 :9 (1996), 3-24 ; S. V. Gonchenko, “Moduli of $\Omega$ -conjugacy of two-dimensional diffeomorphisms with a structurally unstable heteroclinic contour”, Sb. Math. , 187 :9 (1996), 1261-1281
    9. Д. В. Аносов, А. А. Болибрух, В. А. Васильев, А. М. Вершик, А. А. Гончар, М. Л. Громов, С. М. Гусейн-Заде, В. М. Закалюкин, Ю. С. Ильяшенко, В. В. Козлов, М. Л. Концевич, Ю. И. Манин, А. И. Нейштадт, С. П. Новиков, Ю. С. Осипов, М. Б. Севрюк, Я. Г. Синай, А. Н. Тюрин, Л. Д. Фаддеев, Б. А. Хесин, А. Г. Хованский, “Владимир Игоревич Арнольд (к шестидесятилетию со дня рождения)”, УМН , 52 :5(317) (1997), 235-255 ; D. V. Anosov, A. A. Bolibrukh, V. A. Vassiliev, A. M. Vershik, A. A. Gonchar, M. L. Gromov, S. M. Gusein-Zade, V. M. Zakalyukin, Yu. S. Ilyashenko, V. V. Kozlov, M. L. Kontsevich, Yu. I. Manin, A. I. Neishtadt, S. P. Novikov, Yu. S. Osipov, M. B. Sevryuk, Ya. G. Sinai, A. N. Tyurin, L. D. Faddeev, B. A. Khesin, A. G. Khovanskii, “Vladimir Igorevich Arnol"d (on his 60th birthday)”, Russian Math. Surveys , 52 :5 (1997), 1117-1139
    10. С. А. Вакуленко, П. В. Гордон, “Распространение и рассеяние кинков в неоднородной нелинейной среде”, ТМФ , 112 :3 (1997), 384-394 ; S. A. Vakulenko, P. V. Gordon, “Propagation and scattering of kinks in inhomogeneous nonlinear media”, Theoret. and Math. Phys. , 112 :3 (1997), 1104-1112
    11. Е. А. Сатаев, “Производная Шварца для многомерных отображений и потоков”, Матем. сб. , 190 :1 (1999), 139-160 ; E. A. Sataev, “Schwartzian derivative for multidimensional maps and flows”, Sb. Math. , 190 :1 (1999), 143-164
    12. Э. Э. Шноль, Е. В. Николаев, “О бифуркациях симметричных положений равновесия, отвечающих двукратным собственным значениям”, Матем. сб. , 190 :9 (1999), 127-150 ; È. È. Shnol", E. V. Nikolaev, “On the bifurcations of equilibria corresponding to double eigenvalues”, Sb. Math. , 190 :9 (1999), 1353-1376
    13. Ю. Н. Бибиков, “Устойчивость и бифуркация при периодических возмущениях положения равновесия осциллятора с бесконечно большой или бесконечно малой частотой колебаний”, Матем. заметки , 65 :3 (1999), 323-335 ; Yu. N. Bibikov, “Stability and bifurcation under periodic perturbations of the equilibrium position of an oscillator with an infinitely large or infinitely small oscillation frequency”, Math. Notes , 65 :3 (1999), 269-279
    14. Э. Э. Шноль, “Правильные многогранники и бифуркации симметричных положений равновесия обыкновенных дифференциальных уравнений”, Матем. сб. , 191 :8 (2000), 141-157 ; È. È. Shnol", “Regular polyhedra and bifurcations of symmetric equilibria of ordinary differential equations”, Sb. Math. , 191 :8 (2000), 1243-1258
    15. С. В. Богатырев, “Циклы-утки в системе Льенарда”, Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 12 , СамГТУ, Самара, 2001, 36-39
    16. Л. И. Кононенко, “Качественный анализ сингулярно возмущенных систем с одной или двумя медленными и быстрыми переменными”, Сиб. журн. индустр. матем. , 5 :4 (2002), 55-62
    17. Е. П. Волокитин, С. А. Тресков, “Бифуркационная диаграмма кубической системы льенаровского типа”, Сиб. журн. индустр. матем. , 5 :3 (2002), 67-75
    18. Е. А. Щепакина, “Условия безопасности воспламенения горючей жидкости в пористом изоляционном материале”, Сиб. журн. индустр. матем. , 5 :3 (2002), 162-169
    19. М. Д. Новиков, Б. М. Павлов, “О некоторых простых потоковых системах с хаотическими режимами”, Матем. моделирование , 14 :11 (2002), 63-77
    20. Е. А. Щепакина, “Притягивающе-отталкивающие интегральные поверхности в задачах горения”, Матем. моделирование , 14 :3 (2002), 30-42
    21. О. Д. Аносова, “Инвариантные многообразия в сингулярно возмущенных системах”, , Сборник статей. К 80-летию со дня рождения академика Евгения Фроловича Мищенко, Тр. МИАН, 236 , Наука, МАИК «Наука/Интерпериодика», М., 2002, 27-32 ; O. D. Anosova, “Invariant Manifolds in Singularly Perturbed Systems”, Proc. Steklov Inst. Math. , 236 (2002), 19-24
    22. Е. А. Щепакина, “Сингулярно возмущенные модели горения в многофазных средах”, Сиб. журн. индустр. матем. , 6 :4 (2003), 142-157
    23. Е. А. Щепакина, “Сингулярные возмущения в задаче моделирования безопасных режимов горения”, Матем. моделирование , 15 :8 (2003), 113-117
    24. Л. И. Кононенко, “Инфинитезимальный анализ сингулярных систем с быстрыми и медленными переменными”, Сиб. журн. индустр. матем. , 6 :4 (2003), 51-59
    25. Л. Г. Куракин, В. И. Юдович, “О бифуркациях равновесий при разрушении косимметрии динамической системы”, Сиб. матем. журн. , 45 :2 (2004), 356-374 ; L. G. Kurakin, V. I. Yudovich, “On equilibrium bifurcations in the cosymmetry collapse of a dynamical system”, Siberian Math. J. , 45 :2 (2004), 294-310
    26. С. В. Гонченко, В. С. Гонченко, “О бифуркациях рождения замкнутых инвариантных кривых в случае двумерных диффеоморфизмов с гомоклиническими касаниями”, Динамические системы и смежные вопросы геометрии , Сборник статей. Посвящается памяти академика Андрея Андреевича Болибруха, Тр. МИАН, 244 , Наука, МАИК «Наука/Интерпериодика», М., 2004, 87-114 ; S. V. Gonchenko, V. S. Gonchenko, “On Bifurcations of Birth of Closed Invariant Curves in the Case of Two-Dimensional Diffeomorphisms with Homoclinic Tangencies”, Proc. Steklov Inst. Math. , 244 (2004), 80-105
    27. J. Guckenheimer, R. Haiduc, “Canards at folded nodes”, Mosc. Math. J. , 5 :1 (2005), 91-103
    28. Э. Л. Аэро, С. А. Вакуленко, “Асимптотическое поведение решений для сильно нелинейной модели кристаллической решетки”, ТМФ , 143 :3 (2005), 357-367 ; E. L. Aero, S. A. Vakulenko, “Asymptotic Behavior of Solutions of a Strongly Nonlinear Model of a Crystal Lattice”, Theoret. and Math. Phys. , 143 :3 (2005), 782-791
    29. А. Р. Борисюк, “Глобальные бифуркации на бутылке Клейна. Общий случай”, Матем. сб. , 196 :4 (2005), 3-22 ; A. R. Borisyuk, “Global bifurcations on a Klein bottle. The general case”, Sb. Math. , 196 :4 (2005), 465-483
    30. Е. П. Белан, “О динамике бегущих волн в параболическом уравнении с преобразованием сдвига пространственной переменной”, Журн. матем. физ., анал., геом. , 1 :1 (2005), 3-34
    31. Т. С. Фирсова, “Топология аналитических слоений в $\mathbb C^2$ . Свойство Купки-Смейла”, Нелинейные аналитические дифференциальные уравнения , Сборник статей, Тр. МИАН, 254 , Наука, МАИК «Наука/Интерпериодика», М., 2006, 162-180 ; T. S. Firsova, “Topology of Analytic Foliations in $\mathbb C^2$ . The Kupka-Smale Property”, Proc. Steklov Inst. Math. , 254 (2006), 152-168
    32. А. О. Ремизов, “Многомерная конструкция Пуанкаре и особенности поднятых полей для неявных дифференциальных уравнений”, Оптимальное управление , СМФН, 19 , РУДН, М., 2006, 131-170 ; A. O. Remizov, “Many-Dimensional Poincaré Construction and Singularities of Lifted Fields For Implicit Differential Equations”, Journal of Mathematical Sciences , 151 :6 (2008), 3561-3602
    33. Л. И. Кононенко, “Качественный анализ сингулярно возмущенной системы в $\mathbb R^3$ ”, Сиб. журн. индустр. матем. , 10 :4 (2007), 76-82 ; L. I. Kononenko, “Qualitative analysis of a singularly perturbed system in $\mathbb R^3$ ”, J. Appl. Industr. Math. , 3 :4 (2009), 456-461
    34. Ю. А. Гришина, А. А. Давыдов, “Структурная устойчивость простейших динамических неравенств”, Динамические системы и оптимизация , Сборник статей. К 70-летию со дня рождения академика Дмитрия Викторовича Аносова, Тр. МИАН, 256 , Наука, МАИК «Наука/Интерпериодика», М., 2007, 89-101 ; Yu. A. Grishina, A. A. Davydov, “Structural Stability of Simplest Dynamical Inequalities”, Proc. Steklov Inst. Math. , 256 (2007), 80-91
    35. Ф. И. Атауллаханов, Е. С. Лобанова, О. Л. Морозова, Э. Э. Шноль, Е. А. Ермакова, А. А. Бутылин, А. Н. Заикин, “Сложные режимы распространения возбуждения и самоорганизация в модели свертывания крови”, УФН , 177 :1 (2007), 87-104 ; F. I. Ataullakhanov, E. S. Lobanova, O. L. Morozova, È. È. Shnol", E. A. Ermakova, A. A. Butylin, A. N. Zaikin, “Intricate regimes of propagation of an excitation and self-organization in the blood clotting model”, Phys. Usp. , 50 :1 (2007), 79-94
    36. П. Д. Лебедев, “Вычисление меры невыпуклости плоских множеств”, Тр. ИММ УрО РАН, 13 , № 3, 2007, 84-94
    37. “Владимир Игоревич Арнольд (к семидесятилетию со дня рождения)”, УМН , 62 :5(377) (2007), 175-184 ; “Vladimir Igorevich Arnol"d (on his 70th birthday)”, Russian Math. Surveys , 62 :5 (2007), 1021-1030
    38. Ю. М. Апонин, Е. А. Апонина, “Иерархия моделей математической биологии и численно-аналитические методы их исследования (обзор)”, Матем. биология и биоинформ. , 2 :2 (2007), 347-360
    39. Е. С. Голодова, Е. А. Щепакина, “Моделирование безопасных процессов горения с максимальной температурой”, Матем. моделирование , 20 :5 (2008), 55-68 ; E. S. Golodova, E. A. Shchepakina, “Modelling of safe combustion with maximal temperature”, Math. Models Comput. Simul. , 1 :2 (2009), 322-334
    40. В. М. Закалюкин, А. О. Ремизов, “Лежандровы особенности в системах неявных обыкновенных дифференциальных уравнений и быстро-медленных динамических системах”, Дифференциальные уравнения и динамические системы , Сборник статей, Тр. МИАН, 261 , МАИК «Наука/Интерпериодика», М., 2008, 140-153 ; V. M. Zakalyukin, A. O. Remizov, “Legendre Singularities in Systems of Implicit ODEs and Slow-Fast Dynamical Systems”, Proc. Steklov Inst. Math. , 261 (2008), 136-148
    41. Н. Е. Кулагин, Л. М. Лерман, Т. Г. Шмакова, “О радиальных решениях уравнения Свифта-Хоенберга”, Дифференциальные уравнения и динамические системы , Сборник статей, Тр. МИАН, 261 , МАИК «Наука/Интерпериодика», М., 2008, 188-209 ; N. E. Kulagin, L. M. Lerman, T. G. Shmakova, “On Radial Solutions of the Swift-Hohenberg Equation”, Proc. Steklov Inst. Math. , 261 (2008), 183-203
    42. П. Д. Лебедев, А. А. Успенский, “Геометрия и асимптотика волновых фронтов”, Изв. вузов. Матем. , 2008, № 3, 27-37 ; P. D. Lebedev, A. A. Uspenskii, “Geometry and the asymptotics of wave forms”, Russian Math. (Iz. VUZ) , 52 :3 (2008), 24-33
    43. Л. И. Кононенко, “Релаксации в сингулярно возмущенных системах на плоскости”, Вестн. НГУ. Сер. матем., мех., информ. , 9 :4 (2009), 45-50
    44. Д. В. Аносов, “О математических работах Л. С. Понтрягина”, Дифференциальные уравнения и топология. I , Сборник статей. К 100-летию со дня рождения академика Льва Семеновича Понтрягина, Тр. МИАН, 268 , МАИК «Наука/Интерпериодика», М., 2010, 11-23 ; D. V. Anosov, “On the mathematical work of L. S. Pontryagin”, Proc. Steklov Inst. Math. , 268 (2010), 5-16
  • а) Введение в теорию бифуркаций

    Теория бифуркаций динамических систем описывает качественные, скачкообразные изменения фазовых портретов дифференциальных уравнений при непрерывном, плавном изменении параметров. Так, при потере устойчивости особой точкой может возникнуть предельный цикл, а при потере устойчивости предельным циклом – хаос. Такого рода изменения и называются бифуркациями.

    В дифференциальных уравнениях, описывающих реальные физические явления, чаще всего встречаются особые точки и предельные циклы общего положения, то есть гиперболические. Однако встречаются и специальные классы дифференциальных уравнений, где дело обстоит иначе. Таковы, например, системы, обладающие симметриями, связанными с природой описываемого явления, а также гамильтоновы уравнения, обратимые системы, уравнения, сохраняющие фазовый объем. Так, например, рассмотрим однопараметрическое семейство динамических систем на прямой с симметрией второго порядка:

    Типичная бифуркация симметричного положения равновесия в такой системе(«трезубец») изображена на рис. 1. Она состоит в том, что от теряющего устойчивость симметричного положения равновесия ответвляется два новых, менее симметричных, положения равновесия. При этом симметричное положение равновесия сохраняется, но теряет устойчивость.

    Основы математической теории бифуркаций были созданы А. Пуанкаре и A. M. Ляпуновым в начале ХХ века, а затем развиты некоторыми школами. Теория бифуркаций находит приложения в разных науках, начиная от физики и химии, заканчивая биологией и социологией.

    Происхождение термина бифуркация (от лат. bifurcus - раздвоенный) связано с тем фактом, что динамическая система, поведение которой в равновесной области описывается системой линейных дифференциальных уравнений, имеющих единственное решение, при изменении параметров до некоторого критического значения, достигает так называемой точки бифуркации – точки ветвления возможных путей эволюции системы.

    Этот момент (точка ветвления) соответствует переходу системы в неравновесное состояние, а на уровне математического описания ему соответствует переход к нелинейным дифференциальным уравнениям и ветвление их решений.

    Бифуркацией называется приобретение нового качества эволюции (в движении) динамической системы при малом изменении ее параметров. Бифуркация соответствует перестройке характера движения или структуры реальной системы (физической, химической, биологической и т. д.).

    С позиций математики, бифуркация – это смена топологической структуры разбиения фазового пространства динамической системы на траектории при малом изменении ее параметров.


    Это определение опирается на понятие топологической эквивалентности динамических систем: две системы топологически эквивалентны, если они имеют одинаковую структуру разбиения фазового пространства на траектории, если движения одной из них могут быть сведены к движениям другой непрерывной заменой координат и времени.

    Примером такой эквивалентности служат движения маятника при разных величинах коэффициента трения k: при малом трении траектории на фазовой плоскости имеют вид скручивающихся спиралей, а при большом – парабол (рис. на следующем слайде)

    Переход от фазового портрета а к б не представляет собой бифуркации, поскольку бифуркации – это переход от данной системы к топологически неэквивалентной.

    Пример: В математической модели возникновению ячеек Бенара соответствует бифуркация рождения новых состояний равновесия (соответствующих ячеистой структуре).

    Среди различных бифуркаций при анализе моделей физических систем особенно интересны, так называемые, локальные – это бифуркации, при которых происходит перестройка отдельных движений динамической системы.

    Простейшими и наиболее важными из них являются:

    бифуркации состояний равновесия (ячейки Бенара)

    бифуркации периодических движений.

    Заключение. Важные черты бифуркации

    Бифуркации, в результате которых исчезают статические или периодические режимы (то есть состояния равновесия или предельные циклы), могут приводить к тому, что динамическая система переходит в режим стохастических колебаний.

    В приложениях теории бифуркаций ставится задача – для каждой конкретной ситуации найти аналитические выражения для вариантов решений уравнений, возникающих в точках бифуркации, а также определение значений параметров, при которых начинается ветвление решений уравнений. Предварительно необходимо провести анализ устойчивости системы и поиск точек ее неустойчивости. Методы этого анализа основаны на теории устойчивости, они достаточно подробно разработаны и носят чисто технический характер.

    В теории бифуркаций описано большое число бифуркационных ситуаций. В развитии реальных природных систем могут наблюдаться не отдельные бифуркации, а целые каскады бифуркаций (классическим примером может служить возникновение турбулентности и других гидродинамических неустойчивостей). Кроме того, различают бифуркации и катастрофы. Существует даже теория катастроф. Однако, анализ связей и различий между ними выходит за пределы данного учебного пособия.

    Очень важная черта бифуркаций: В момент времени, когда система находится вблизи точки бифуркации, огромную роль начинают играть малые возмущения значений ее параметров. Эти возмущения могут носить как чисто случайный характер, так и быть целенаправленными. Именно от них зависит, по какой эволюционной ветви пойдет система, пройдя через точку бифуркации. То есть, если до прохождения точки бифуркации, поведение системы подчиняется детерминистским закономерностям, то в самой точке бифуркации решающую роль играет случай.

    Вследствие этого, по словам И. Пригожина, мир становится «загадочным, непредсказуемым, неконтролируемым». В определенном отношении это так. Но полностью с этим высказыванием нельзя согласиться, поскольку для любой системы в точке бифуркации имеется не произвольный, а вполне определенный набор путей эволюции. Поэтому даже если работает случайность, то она работает в строго определенном поле возможностей. И, следовательно, говорить о полной неопределенности и, тем более, полной загадочности некорректно. Что же касается неконтролируемости, то, конечно, говорить о тотальном контроле не имеет смысла, но в некоторых процессах возможно вмешательство как подталкивание к желаемым вариантам развития.

    4. ХАОС

    Тео́рия ха́оса - математический аппарат, описывающий поведение некоторых нелинейных динамических систем, подверженных, при определённых условиях, явлению, известному как хаос, которое характеризуется сильной чувствительностью поведения системы к начальным условиям; поведение такой системы кажется случайным, даже если модель, описывающая систему, является детерминированной; примерами подобных систем являются атмосфера, турбулентные потоки, биологические популяции, общество как система коммуникаций и его подсистемы: экономические, политические и другие социальные системы.

    Теория хаоса гласит, что сложные системы чрезвычайно зависимы от первоначальных условий и небольшие изменения в окружающей среде ведут к непредсказуемым последствиям.

    Математические системы с хаотическим поведением являются детерминированными, то есть подчиняются некоторому строгому закону и, в каком-то смысле, являются упорядоченными.

    Динамический хаос - явление в теории динамических систем, при котором поведение нелинейной системы выглядит случайным, несмотря на то, что оно определяется детерминистическими законами. Причиной появления хаоса является неустойчивость по отношению к начальным условиям и параметрам: малое изменение начального условия со временем приводит к сколь угодно большим изменениям динамики системы.

    Так как начальное состояние физической системы не может быть задано абсолютно точно (например, из-за ограничений измерительных инструментов), то всегда необходимо рассматривать некоторую (пусть и очень маленькую) область начальных условий. При движении в ограниченной области пространства экспоненциальная расходимость с течением времени близких орбит приводит к перемешиванию начальных точек по всей области. После такого перемешивания бессмысленно говорить о координате частицы, но можно найти вероятность ее нахождения в некоторой точке.

    Детерминированный хаос - сочетает детерминированность и случайность, ограниченную предсказуемость и непредсказуемость и проявляется в столь разных явлениях как кинетика химических реакций, турбулентность жидкости и газа, геофизические, в частности, погодные изменения, физиологические реакции организма, динамика популяций, эпидемии, социальные явления (например, курс акций).

    Похожие статьи

    © 2024 rsrub.ru. О современных технологиях кровли. Строительный портал.